

The Human Genome Variation Map

Dr. Adam Novak Senior Software Engineer UC Santa Cruz Genomics Institute

Reference Genome Abstraction

The O(\$1000) Genome

Some Regions are Highly Variable

187 Holes In The Abstraction

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/

Institution: University of California, Santa Cruz

Proceedings of the National Academy of Sciences of the United States of America

CURRENT ISSUE // ARCHIVE // NEWS & MULTIMEDIA // AUTHORS // ABOUT / COLLECTED ARTICLES // BROWSE BY TOPIC // EARLY EDITION // FRONT MATTER

Current Issue > vol. 113 no. 42 > Amalio Telenti, 11901–11906

Check for updates

Deep sequencing of 10,000 human genomes

Amalio Telenti^{a,b,1}, Levi C. T. Pierce^{a,c,1}, William H. Biggs^{a,1}, Julia di Iulio^{a,b}, Emily H. M. Wong^a, Martin M. Fabani^a, Ewen F. Kirkness^a, Ahmed Moustafa^a, Naisha Shah^a, Chao Xie^d, Suzanne C. Brewerton^d, Nadeem Bulsara^a, Chad Garner^a, Gary Metzker^a, Efren Sandoval^a, Brad A. Perkins^a, Franz J. Och^{a,c}, Yaron Turpaz^{a,d}, and J. Craig Venter^{a,b,2} ^aHuman Longevity Inc., San Diego, CA 92121; ^bJ. Craig Venter Institute, La Jolla, CA 92037;

^cHuman Longevity Inc., Mountain View, CA 94041;

^dHuman Longevity Singapore Pte. Ltd., Singapore 138542

Contributed by J. Craig Venter, August 18, 2016 (sent for review July 1, 2016; reviewed by David B. Goldstein and Stephen W. Scherer)

October 18, 2016 vol. 113 no. 42 Masthead (PDF) Table of Contents

Don't Miss

PNAS Full-Text iOS App Download the app for free from iTunes today!

"each genome carries on average 0.7 Mb of sequence that is not found in the main build"

Add Variation to the Reference

Variation Graphs

Variation Graphs

Parallel nodes represent alternatives

Expressive Power

Inversions and duplications are allowed

Not just a DAG

Backwards Compatibility

Embed the primary reference path

Eventual HGVM Goals

Build a whole-genome graph reference

Include all variants at 1% frequency in any population

HGVM Graph Strategy

Combine variation data from:

GRCh38

1000 Genomes

Simons Genome Diversity Project

Illumina Platinum Genomes

. . .

Immediate Goals

Construct a Chromosome 22 Variation Map

Combine data from multiple sources

Implement pipeline logic

Identify toolchain shortcomings

Tools

Pipeline GRCh38 + Alts Cactus HAL GRCh38 Graph **1KG Point** Variants GRCh38 Graph Reference + Variants 1KG SVs

Pipeline Engineering

📮 BD2KG	O Watch →	;					
<> Code	(!) Issues 0	ິງ Pull requests 🛛 🛛	Projects 0	🗐 Wiki	Settings	Insights -	

Tool to build a (Human) Genome Variation Map from a set of data sources

BD2KGe	⊙ Watch -	7					
<> Code	() Issues (14)	្រា Pull requests ០	Projects 0	🗉 Wiki	Insights -		

Home of the UC Santa Cruz Computational Genomics Lab's Toil-based VG pipeline

Packaging

Graph and alignment indexes

Includes a JSON manifest defining primary paths

{

J,

"hgvm_manifest_version": "0.1", "primary_paths": [

"chr22_KI270737v1_random", "chr22",

"chr22_KI270735v1_random",

"chr22_KI270734v1_random",

"chr22_KI270738v1_random",

"chr22_KI270731v1_random", "chr22_KI270732v1_random",

"chr22 KI270736v1 random",

"chr22 KI270733v1 random",

"chr22_KI270739v1_random"

"uuid": "9ef69e94-a95f-455e-8fca-f705a334968a", "build_time": "2017-05-27 14:05:42"

Synthetic Diploid Evaluation

Assembly Fragment Alignment

Substitutions: 1 bp Deletions: 2 bp

Sample Graph Aligned Assembly Fragments Edit Metrics

Synthetic Diploid Metrics

How many edits of each type are present in assembly fragments aligned to the sample graph?

Fewer edits = better variant calling

Chr22 Results

Future Work

Create read-aware variant caller that handles cycles

Explain synthetic diploid performance

Scale to whole genome

Acknowledgments

David Haussler, Josh Stuart, Beth Shapiro, Ed Green, Benedict Paten, Glenn Hickey, Jordan Eizenga, Yohei Rosen, Charles Markello, Sean Blum, Maciek Smuga-Otto, Kishwar Shafin, Erik Garrison, Jouni Sirén, Mike Lin, Joel Armstrong, CJ Ketchum, John Vivian, Arjun Rao, Eric Dawson, Toshiaki Katayama, Frank Nothaft, Lynn Brazil, Kelly Sauder, Tracie Tucker, Anna Henderson, Richard Novak, Cheryl Covino, The GA4GH, The ARCS Foundation, The Simons Foundation, The W.M. Keck Foundation, 34 Agilent, Microsoft, Amazon, NIH

