SegAlign: A Scalable GPU-Based Whole Genome
Aligner

Sneha D. Goenka

§* Yatish Turakhia

= Benedict Patent, Mark Horowitz$

§Stanford University
iUniversity of California, Santa Cruz
gsneha@stanford.edu, yturakhi@ucsc.edu, bpaten@ucsc.edu, horowitz@ee.stanford.edu

Abstract—Pairwise Whole Genome Alignment (WGA) is a
crucial first step to understanding evolution at the DNA sequence-
level. Pairwise WGA of thousands of currently available species
genomes could help make biological discoveries, however, com-
puting them for even a fraction of the millions of possible pairs
is prohibitive — WGA of a single pair of vertebrate genomes
(human-mouse) takes 11 hours on a 96-core Amazon Web
Services (AWS) instance (c5.24xlarge).

This paper presents SegAlign — a scalable, GPU-accelerated
system for computing pairwise WGA. SegAlign is based on the
standard seed-filter-extend heuristic, in which the filtering stage
dominates the runtime (e.g. 98 % for human-mouse WGA), and is
accelerated using GPU(s). Using three vertebrate genome pairs,
we show that SegAlign provides a speedup of up to 14x on an
8-GPU, 64-core AWS instance (p3.16xlarge) for WGA and nearly
2.3x reduction in dollar cost. SegAlign also allows parallelization
over multiple GPU nodes and scales efficiently.

Index Terms—Whole Genome Alignment, Graphics Processing
Unit (GPU), Comparative Genomics, Apache Spark.

I. INTRODUCTION

The field of comparative genomics relies on comparing
the genomes of different species. Pairwise whole genome
alignment (WGA) is a computational technique that allows
us to compare entire genome sequences of a pair of species
— a target and a query. WGA is a fundamental operation in
comparative genomics that enables us to study evolution at
the DNA sequence level [1]]. WGAs are primarily used for
identifying homologous sequences, i.e., sequences that share
a common ancestry in the genomes of different species [2].
This can further be applied to (i) identify where certain
functional elements, such as genes and regulatory sequences,
known in the genome of one species, are present in the
genome of another species [3[], [4], as well as to (ii) dis-
cover novel sequences of unknown function that are highly
conserved across species genomes, and therefore, are likely to
be biologically significant [5]. WGAs have also been used in
phylogenetics [6]], [7]], and for reconstructing the genomes of
extinct species [8], [9]].

We are now entering an era of large-scale comparative
genomics — nearly a thousand vertebrate species have already
been sequenced and assembled (see Figure|[T), and sequencing
of thousands of more species is currently underway [[11]-[13]].

* These authors contributed equally to this work

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.000©2020 IEEE

1000

750

500

Number of species

250

0
A0 gt e g gt S e gt S a0

Fig. 1: Cumulative number of vertebrate genome assemblies
(one assembly considered per species) available in the NCBI
genome database [10] by year.

In fact, the recently proposed Earth BioGenome Project [[13]]
aims to sequence the genomes of all living animal and
plant species on earth in the next ten years. This wealth
of genomic data would allow us to study evolution at an
unprecedented scale and resolution, but also would pose
serious computational challenges. Using privately-shared data,
we estimated that over 440 CPU-years were required for
approximately 1,400 WGA pairs (i.e., an average of 115 CPU-
days per pair) of large genomes (>1G bases) computed by
the UCSC Genome Browser group [14]] (one of the largest
centers supporting comparative genomics research) to date.
Another recent work that created a multiple vertebrate genome
alignment of over 600 species required around 200 CPU-years
of computation [15]], that took 3 months of wall-clock time on
an 800-core AWS cluster, with around 90% of the time spent
on performing pairwise WGA. We anticipate that in a few
years, when thousands of new vertebrate genomes would be
sequenced each year, it would become impossible even for
large compute clusters to keep up with the sequencing rate
using the currently available software tools.

In this paper, we describe SegAlign — a scalable GPU-
based pairwise whole genome aligner. SegAlign is based on
the standard seed-filter-extend paradigm [16], and provides
large improvements in both speed and cost compared to
LASTZ [17], the current state-of-art software tool for cross-
species WGA. This paper makes the following contributions:

https://orcid.org/0000-0002-1716-7769
https://orcid.org/0000-0001-5600-2900

X
/7
y / J/ > Alignment
v H '
Seed pattern / High-scoring i
1110100110010101111 _ / ™ Segment Pair 5 '
<] X =4
X
£ / /I 7/ c
R ...AACTT TGAAAC. . .] 5
LLIXIXR] [XRIXIX] 1] & J/ / 4 =
Q ...GCTT CTTAC. .. o
Seed X
x Ungapped
4 / _'Extgension
L 4 / V4
---------------- > Target (R) -

Target (R)

(a) (b)

(©

Fig. 2: An illustration of the seed-filter-extend heuristic used in LASTZ. (a) An example of the seed hit with a given seed
and the default seed pattern in LASTZ, where 1 is an exact match and O is a don’t care at that position. (b) A dot plot (not
to scale) where the seed hits are shown in yellow, and the right and left gap-free extensions in blue. Only forward strand hits
and extensions are shown with diagonals drawn in grey. The discarded segment pairs are marked with a red cross-mark and
the high-scoring segment pairs (HSPs) with a green check-mark. (c) A dot plot for the gapped extension stage using the HSPs
from (b) with the region in which the dynamic programming algorithm computes the scores shown in blue and the resulting

alignment path in red.

1) We provide a GPU implementation to accelerate the
bottleneck seeding and filtering stages of LASTZ (re-
ferred to as the seed-and-filter stage subsequently in
the paper). In particular, the filtering stage has a large
number of data-dependent instructions, and we propose a
scheme to parallelize it efficiently for the SIMT (single
instruction, multiple threads) architecture that is used in
GPUs [18]]. On one NVIDIA V100 GPU, we obtain 180 x
higher throughput on the seed-and-filter stage compared
to a single-core of a modern Intel Xeon processor. We
demonstrate that our implementation has high compute
and memory bandwidth utilization on a GPU.

We extend our GPU-accelerated seed-and-filter stage
to a complete seed-filter-extend tool, called SegAlign,
where the extension is performed using LASTZ on CPU.
SegAlign is developed using Intel’s TBB library [19],
which helps in efficiently scheduling and load balancing
the workload on multiple CPU cores and GPU devices.
We evaluated SegAlign on AWS instances using three
vertebrate genome pairs and found that on p3.16xlarge
instance (8 GPUs, 64 logical cores (called vCPUs)),
SegAlign provides 12-14x higher performance than a
parallel execution of LASTZ on the c5.24xlarge instance
(96 vCPUs). Additionally, SegAlign provides nearly 2.3 x
savings in cost.

We further extend SegAlign to a multi-node implemen-
tation using the Apache Spark framework [20]. We eval-
vated this implementation on a cluster of GPU nodes
created using AWS Elastic MapReduce (EMR) frame-
work [21] and found that our implementation scales
efficiently, with a strong scaling efficiency of around 93%
and a weak scaling efficiency of around 97.8%.

We compared SegAlign’s output to LASTZ’s output for
human and mouse WGA and found that SegAlign not

2)

3)

4)

only recovers every alignment discovered by LASTZ, but
also finds a few additional alignments. SegAlign supports
all output formats used by LASTZ along with a wide
variety of command line options. To that end, we believe
that SegAlign could serve as a drop-in replacement for
LASTZ in a large number of comparative genomics
pipelines.

To understand how SegAlign works, Section [[I] provides
the needed background on the WGA algorithm and NVIDIA’s
GPU execution model. Section then describes the imple-
mentation details of SegAlign at both the system and the
seed-and-filter kernel level. It also presents the details about
SegAlign’s multi-node parallelization technique using Apache
Spark. Section [[V] describes the experimental methodology
used to evaluate our system, and Section [V] presents the results
of this evaluation. Section shows how SegAlign compares
to related work, and Section [VII] concludes the paper and
describes future directions for this work.

II. BACKGROUND
A. Whole genome alignment algorithm (LASTZ)

Whole genome alignment (WGA) is a fundamental tool in
comparative genomics to study evolution and understanding
the genome function. Its primary objective is to identify
the set of corresponding subsequences between the whole
genome sequences of a species pair that are well-conserved
(i.e. have high similarity), and therefore, are likely to serve a
biological function [22], [23]. At the core of WGA algorithms
is sequence alignment.

The Smith-Waterman (SW) algorithm [24] is a classic
algorithm for local sequence alignment in genomics. It is
based on dynamic programming and has a space and time
complexity of O(LrLq), where Lr and L are the lengths
of the input sequences. While aligning whole genomes, the

input sequences could get as long as billions of base-pairs
(bp), making it intractable to compute WGA with the SW
algorithm. Hence, the most common whole genome aligners,
like LASTZ [[17], use heuristics based on the seed-filter-extend
paradigm, made popular by BLAST [16].

The seed-filter-extend pipeline of LASTZ computes local
alignments between the target (R) and the query ()) genome
sequences in 3 stages — 1) Seeding 2) Filtering and 3)
Extension.

Seeding. The seeding stage reduces the search space for the
alignments from the entire genomes to short, localized, exact
matches between the target and the query genome, known as
seed hits, as shown in Figure [2| For increased sensitivity, seed
hits are based on a seed pattern instead of exact matches [25],
e.g. Figure 2a] A seed pattern requires a match only at some
fixed positions in the seed hit.

A seed is a subsequence of length %k (also known as a k-
mer) in the query genome. Based on the seed pattern, the
corresponding k-mer position(s) are searched along the target
genome to determine the seed hits as shown in Figure[2a] Since
k is small, a look-up table is created that lists all possible k-
mers along with their positions in the target genome to reduce
the computation needed for this step.

Since the seed hits span only 10s of bp, there is a high
probability of finding randomly occurring matches. Hence, the
seeding stage ends up with a high false-positive rate. For effi-
ciency, most of these false-positives need to be filtered before
extending them using the most compute-intensive dynamic
programming step.

Filtering. The filtering stage sieves out a majority of the
false-positives by extending the short matches to 100s of bp
in an inexpensive, gap-free manner. The seed hit is extended
along both right and left sides of the diagonal, as shown in the
dot plot in Figure A dot plot is a graphical representation
of a relationship, such as an alignment, between two genome
sequences. Specifically, a dot (i,7) represents a base-pair at
position ¢ in the target sequence and position j in the query
sequence, and a diagonal refers to a set of points with a
constant difference (i — 7).

During each extension, the score for the base-pair at every
position is calculated using the substitution score matrix, .
The cumulative score, along with the maximum score, is
calculated at each position. The extension is stopped in each
direction when the cumulative score falls below the maximum
score by more than the X-drop value, H,. This is known as
the X-drop condition. The sequence between the maximum
positions of the left extension and the right extension results
in a segment pair. The score of the segment pair constructed
is the sum of the maximum scores along the right and left
extensions. If this score crosses the filtering threshold (H}),
the segment pair is a high-scoring segment pair (HSP), which
is sent as an input to the extension stage to generate the final
alignment.

LASTZ incorporates two additional filters in this stage: (i)
in order to reduce the total time spent on the filtering, it skips
a number of seed hits using a diagonal hashing strategy [[17];

(i) LASTZ filters out low-complexity HSPs that have a score
close to the filtering threshold based on the HSP’s entropy
value.

Extension. The extension stage uses dynamic programming
to extend the HSP to construct the final alignments that can
span tens of thousands of bp as depicted in Figure The
alignments with a score above the extension threshold (H.)
are written to the output.

The gapped extension step for an HSP is much more
compute-heavy than a gap-free extension for the seed hit.
However, the filtering ends up being the slowest stage in this
pipeline since the input to it is orders of magnitude higher in
size as compared to the input to the extension stage.

B. GPU execution model

NVIDIA GPUs consist of a set of Streaming Multiproces-
sors (SMs). During a kernel execution on the GPU, multi-
ple thread-blocks are allocated to an SM. A group of 32
consecutive threads constitutes a warp — the basic unit for
scheduling execution and memory accesses within a thread-
block. All the threads in a warp execute the instructions in a
SIMT fashion [26].

In order to maximize the utilization and efficiency of the
SM, several features of the GPU execution model need to
be considered: a) The kernel should be programmed to avoid
divergent branches within a warp to utilize the SM cores
efficiently. A warp remains active and keeps the compute
resources busy, even if it has only a single thread active.
b) Enough thread-blocks and warps should be provisioned to
avoid under-utilization of the SM in case of long wait times
within the warp execution. ¢) Global memory requests within
a warp should be contiguous to utilize high DRAM bandwidth
of GPUs using global memory coalescing. d) On-chip shared
memory should be used to store small, frequently accessed
data shared among the threads in a block. ¢) In order to reduce
shared memory utilization, shuffle (_ _shfl sync()) in-
structions should be used as a means for fast, inter-thread
communication, within a warp.

III. IMPLEMENTATION DETAILS

SegAlign uses Intel TBB library’s [[19] flowgraph utility to
exploit the parallelism in the pipeline for maximum compute
resource utilization while adhering to the dependencies be-
tween the stages. Figure [3] provides an overview of the stages
in SegAlign. Details of the pipeline stages will be described
in the subsections that follow.

In o, the SegAlign software reads the target (R) and
the query (@) genome sequences and loads them into the
CPU DRAM. Each genome consists of multiple chromosomes
(when chromosome-level assembly is not available, these are
sometimes referred to as contigs, scaffolds, etc. but for brevity,
we always refer to them as chromosomes). WGA for a pair
of genomes consists of the combined set of alignments for
each chromosome pair, that are independent of each other.
For a given chromosome pair, an index table and a seed
position table [27]] are constructed for the target chromosome,

Interval work

Read &
construct
seed tables

L CEr

Seeds chunks added
to the queue

Divide query into
intervals and adds to
the queue

Each available thread
takes the next interval |

|
|
|
I
|
|
Fig. 3: Pipeline stages
ones executed on GPU are in green boxes.

for efficient seed position lookup in the seeding stage. In order
to reduce the possible redundant computation of generating
the seed position and the index table for a target chromo-
some multiple times, SegAlign computes the alignments for
all query chromosomes before moving onto the next target
chromosome. After the construction, the target chromosome
sequence and the tables are copied into the GPU DRAM.
In stage 9, the query chromosome is divided into multiple
intervals of size L; (= 10Mbp by default), and each interval is
added to the work queue. TBB allocates one query interval to a
CPU thread. As a result, multiple threads can execute stage 9
in parallel, as depicted by the multiple branches in Figure [3]
In SegAlign, the maximum number of threads that can be
spawned or the maximum number of such parallel branches
is limited by the number of CPU cores on the machine. In
o, each CPU thread breaks down the query interval further,
into multiple chunks of size L. (= 250Kbp by default). These
chunks are added to a work queue in e, where each thread
waits on a GPU for the seed-and-filter stage. The maximum
number of parallel seed-and-filter stages in e is the number
of GPUs on the machine. Each GPU receives a chunk of seeds,
finds the corresponding seed hits in the seeding stage, filters
the seed hits, and generates a vector of high-scoring segment
pairs (HSPs) as the output. Once the CPU thread receives
this vector of HSPs for every chunk in its query interval, it
combines them and prints them to a segment file in stage
@. As soon as these files are generated, they are added to a
work queue and a LASTZ process is spawned to complete the
extension stage and write the alignments to the specified files.

A. Seed Position table construction

Since the construction of the seed position table is on the
critical path of our pipeline (step @), Figure , we opti-
mize this component using parallel algorithms. Our parallel
construction method requires that it make two sweeps of the
target sequence. First, we initialize (4¥+1) entries in the index
table with zeros, where k is the size of the seed. Second, our
algorithm divides the target sequence into smaller intervals and
makes the first sweep of the target intervals in parallel using
a parallel for loop. For each valid seed found in this sweep,
the corresponding entry in the index table is incremented by 1

Generate Seeds
queue - work queue)

Seed chunks

(i

|

Print HSP é
Print HSP

e Seed & Filter

Each available I
GPU takes the | Previous thread
next chunk Icollects segments

Write
segment files

in SegAlign for seeding and filtering. The stages executed on CPU are marked by blue boxes and the

Index Table Seed Position Table

AAMR 0 0 6
ARAC 9 —‘ Hit
AMRG 11 > 9 100 positions
AAAT 16 10| 150 for seed
‘AAAC

ARCA 22 L 11 366

hd .

. .

e .

Fig. 4: An example seed position table showing a seed hit
lookup pattern for an example seed ‘AAAC’.

using an atomic add instruction. Now, the index table stores the
seed counts for each seed. Next, a parallel prefix scan of the
index table updates it to store the ending address for each seed
in its corresponding entry. Finally, the second parallel sweep
takes place in which the position of each valid seed is stored
in the position table corresponding to address in the index,
while it simultaneously decrements the address by 1 using an
atomic instruction. At the end of this step, the index table
stores the starting address for each seed in its corresponding
entry, similar to Figure] Overall, this implementation results
in 2-3x faster seed position table construction time on an 8-
core processor than a naive, sequential implementation of the
same algorithm.

B. Seed-and-Filter stage design on GPU

Seeding. The input to the seed-and-filter stage consists of
a vector of the query seed position and the corresponding
seed index. The number of seed hits per seed is variable. So,
in order to allocate only the required amount of memory to
store the seed hit positions, a GPU array, Np;;, is created to
store the number of hits per seed in the input vector. A pre-
processing GPU kernel is launched to calculate the number
of seed hits per seed. The kernel allocates one seed per GPU
thread. Each thread reads the position table addresses from the
index table for its seed and the next. As shown in Figure [}
the difference in addresses provides the number of hits for the
seed. Subsequently, the inclusive_scan utility from NVIDIA’s

DRAM

@

Threads [0 [1]2 3]

T T+3

DRAM | | |

(b)

Fig. 5: (a) Assigning a single seed hit per thread results in
a random memory access pattern for the thread warp. (b)
Coalesced memory access pattern resulting from assigning a
single seed hit per thread warp.

Thrust library [28] is used for the fast, cumulative sum of the
number of hits. Based on the total number of hits, another
GPU array, Ay, is created to store the seed hit positions.
The cumulative sum in Np;; ensures that the hits for a given
seed are written to continuous indices in Ap;;.

Next, the seeding kernel is launched and one seed is allo-
cated per GPU thread. Each thread reads the target positions
for the given seed from the position table and populates Ay ;;
with the target positions and the common query position of the
seed. These seed hits now need to be filtered using gap-free
extension.

Filtering. Seed hits can be extended independently, making
it an embarrassingly parallel problem. A naive implementa-
tion of the filtering stage would allocate one seed hit per
GPU thread. It means that all the threads within a warp
extend different seed hits. However, this choice results in
an implementation that is slower than CPU due to multiple
inefficiencies — (i) Consecutive seed hits considerably vary in
positions over the target and the query genomes. Each thread
would request bases from randomly distributed memory ad-
dresses, as depicted in Figure[5a As described in Section[[I-B]
uncoalesced memory accesses significantly reduce effective
global memory bandwidth. (ii) Each seed hit within a warp
is extended to varying lengths since the X-drop termination
condition is dynamic and based on the genome sequences. This
divergent execution within a warp causes poor utilization since
many threads have to wait on some longer-running threads to
complete.

SegAlign addresses these shortcomings by allocating one
seed hit per warp and not per thread. However, gap-free
extension has multiple data-dependencies which make it hard
to parallelize. SegAlign extends a seed hit by the number
of threads in a warp rather than extending it by one base-
pair at a time. This change enables SegAlign to leverage
the data-locality within seed hit extension and exploit the
high GPU DRAM bandwidth. While a similar approach has
been proposed in cuBLASTP [29], the differences between
SegAlign and cuBLASTP will be highlighted in Section

ol1l2l3lalsle6l7

2122 -1]-1]-1]-1]
o=1 TN S N SN, S SO N
l2[1]/1]4]1[-2]-2]-2]

0=2

|2 1/3[5[2]2][-1]-4]
o=4 T
l2[1]/3[5[4 /38 2]1|
(a)

R alale|T|clalalrT
0 alrlelrlalr|/rlc

s (2122][-1]1]-1]1]
Prefix scan (add)

cummS|2|1|3|5 4|3|2|1|

Prefix scan (max)

maxS [2]2]3]5|5]5][5]5]

maxS — cummS

x |o]1]ofJo|1[2][3[4]

Compare to Hx + prefix scan (OR)

r |ofJofofojofo[1]1]

(b

Fig. 6: Steps involved in the extension stage within a single
partition. (a) Prefix scan with the add operation for an example
warp size of 8. The registers updated at each stage are
highlighted in orange, with arrows showing the communication
between them throughthe = shfl up sync instruction.
(b) The flow of operations in ungapped extension within the
GPU kernel.

Each warp extends the seed hit along the right and left diagonal
as a series of successive partitions until the X-drop criterion
is satisfied.

While computing a partition, every thread in the warp
requests data from consecutive positions in the target and the
query sequences, as shown in Figure [5b] which results in co-
alesced global memory accesses. Each thread-block maintains
the substitution matrix, W, in its shared memory. Each thread
maintains a local register for base-pair substitution score (.5),
cumulative score (cumm.S), maximum score (maxS), X-drop
measure (X), and a flag (/) to indicate whether the X-drop
condition has been satisfied up to this position.

We will be describing the gap-free extension process within
a partition with the help of Figure [6b] For the given example,
the warp size is 8, and the substitution matrix is based on a
simple constant match (score = +2), constant mismatch (score
= -1) model. Each thread in a warp reads the target and

query base from the DRAM and calculates S based on the
substitution matrix. Instead of a naive sequential reduction,
cumm.S is calculated using parallel prefix scan using CUDA’s
warp-level primitives [26], as shown in Figure [6al Each thread
reads the local register of another thread at a distance offset,
o within the warp, using (__ shfl up sync). Similarly,
maxS is calculated for each position using the parallel prefix
scan technique with the max operation in place of the add
operation used for cumm.S. Subsequently, X is concurrently
calculated by the threads as the difference between the maxS
and cumm.S values. X is compared to the X-drop threshold,
H,, and the results are written to the indicator, I register.
A parallel prefix scan with the or operation ensures that the
I register of the last thread of the warp will indicate if the
X-drop condition has been satisfied in the current partition.
The seed hit extension along a diagonal is terminated once
the above condition has been met. If not, cummmS and maxS
of the last thread in the warp are stored in the shared memory
for the next partition in the same direction. Since each thread
in the warp is executing the same instruction, there are hardly
any divergent branches (except at the ends) which leads to a
high SM utilization.

Once the extensions are completed, the target and query
segments between the maximum scoring positions of the
extensions in each direction constitute a segment pair of length
Lg,. The score of the segment pair, H,,, is the sum of the
maximum scores from extensions along the right and the left
diagonal. If H, exceeds the filtering threshold, H, it qualifies
for the extension stage as a high-scoring segment pair (HSP).
Just like LASTZ, if Hy, is close to Hy, an additional entropy-
based filtering step is added. More specifically, for such a
segment pair, H, is multiplied by the Shannon entropy [30]
computed using the probability vector of individual bases (A,
C, G, T) in the segment pair.

An output is generated for each seed hit with that consists
of: (i) a flag to indicate if the corresponding segment pair is
an HSP, and (ii) accompanying data about the HSP (target
start position, query start position, length, score). In the case
of large genome pairs, such as human and mouse, only about
1 in 10,000 seed hits result in an HSP. As such, transferring
back the output for all the segment pairs results in a high
GPU-CPU communication overhead. For example, when the
seed-and-filter stage was profiled for the human-mouse WGA,
it showed that 18% of the time was spent on GPU to CPU
memory transfer. Hence, a new array is created to efficiently
gather only the output for HSPs. When the seed-and-filter stage
was profiled following this optimization, it showed that the
memory transfer overhead reduced to 1% of the total runtime.
Also, since multiple seed hits may result in the same HSP, the
unique_copy function from NVIDIA’s Thrust library is used to
remove the redundancies and transfer only the unique HSPs to
the CPU. While this step adds a 5% overhead to the filtering
kernel, the resulting file sizes are typically reduced by about
5x%.

C. Extension stage using LASTZ

Once the HSPs for an interval are written to a segment
file, a new LASTZ process is spawned to extend the HSPs to
alignments. The number of concurrently LASTZ processes is
limited to the number of cores to avoid (i) context-switching
overhead if the rate of starting LASTZ processes is signifi-
cantly higher than the rate of its completion, (ii) running out
of RAM that leads to some failed LASTZ jobs.

D. Load balancing

In order to maximize the utilization of the GPU and the
CPU resources, SegAlign pipelines the GPU-accelerated seed-
and-filter stage with LASTZ’s CPU-based extension stage,
over different chromosome pair alignments. Before computing
the alignment for all the pairs with a given target, the seed
lookup tables and target chromosome sequences are copied to
the GPU DRAM. Subsequently, each query chromosome is
copied to the GPU DRAM, and once the seed-and-filter stage
is completed for all its intervals, the next query chromosome
begins. Concurrently, a new LASTZ process is spawned off for
each interval of the previously completed query chromosome.

As the number of GPUs increases, the query chunks pro-
duced for one query chromosome are not enough to keep all
the GPUs busy, especially towards the last few chunks, where
most GPUs are idle and only a few GPUs are busy. This
can get particularly pronounced with the high tail latencies
of a few chunks (such as those containing genomic repeats)
containing a large number of alignments. To overcome this, a
double buffering technique is used for query chromosomes in
the GPU. At any given time, there are two query chromosome
sequences available in the GPU. The chunks for both the
chromosomes can be added to the work queue in stage 9
(Figure[3)) simultaneously. As soon as all the chunks for one of
the two chromosomes complete, the next query chromosome
is written to the GPU DRAM, and the corresponding intervals
are scheduled for seed generation and subsequently, the seed-
and-filter stage on GPU. In this way, there is enough work
available to keep the GPUs busy till all the query chromosomes
are filtered for a target chromosome.

SegAlign also concatenates multiple smaller target and
query chromosomes till the concatenated length for each
exceeds a certain threshold (500 Mbp). This is because if the
chromosomes are too small (e.g. for mitochondrial DNA or
a highly fragmented genome assembly), the GPU utilization
may suffer because of: (i) low number of seed hits between the
chromosome pairs, and (ii) higher CPU-GPU memory over-
head. This optimization requires an additional small dictionary
of the chromosome start and stop positions in the concatenated
sequences to be maintained in software to ensure that the
segment files are generated with correct coordinates.

E. Multi-node implementation

Up to this section, we described the single node implemen-
tation of SegAlign with single and multiple GPUs. SegAlign
has further been developed to compute WGA over multiple
GPU nodes using the MapReduce technique.

[Species (common) name | Assembly name | Size (Gbp) |

Homo Sapiens (Human) hg38 3.08
Mus musculus (Mouse) mml10 2.72
Gallus gallus domesticus (Chicken) galGal6 1.05
Taeniopygia guttata (Zebra Finch) taeGut2 1.02

TABLE I: List of vertebrate species used in our study with
their assembly name and size.

Task granularity is one of the most critical factors deter-
mining the performance of a distributed system. As described
earlier, computing alignments for chromosome pairs are inde-
pendent of each other, and this could be a possible strategy
for distributing the parallel and independent tasks. However,
as discussed earlier, because of the varying chromosome
lengths, the number of HSPs and consequently, the number
of extensions vary considerably between chromosome pairs.
As a result, this strategy shows poor performance scaling
due to high tail latency of the extension phase, e.g. the
longest human-mouse chromosome pair takes 14 min while
the median is only 1 min. Hence, SegAlign decouples seed-
and-filter and extension stages into two different MapReduce
phases. For the seed-and-filter phase, the tasks are distributed
such that filtering a chromosome-pair constitutes a task. Each
pair, in turn, generates a number of segment files, each with
a fixed maximum limit on the number of HSPs (currently set
to 10K). Subsequently, in the extension phase, a single task
corresponds to gapped extension for HSPs in a segment file
using LASTZ that takes fewer than a couple of minutes to
complete, thus maintaining a low tail latency.

IV. METHODOLOGY
A. Species and genome data

We downloaded the latest genome assemblies of four ver-
tebrate species (human, mouse, chicken, and zebra finch)
from the UCSC database (http://hgdownload.cse.ucsc.edu/
goldenpath/) for performing whole genome alignments. We
pre-processed all assemblies to only include nuclear chro-
mosomes, and removed the mitochondrial DNA, unplaced,
unlocalized and alternate haplotype sequences from these
assemblies. Table [I] provides the names of the four ver-
tebrate genome assemblies used in our study, along with
their sizes after pre-processing. We used the genome assem-
blies to perform three different whole genome alignments
(human-mouse, human-chicken, chicken-zebra finch), which
allowed evaluation for different combinations of genome
sizes and evolutionary distance. Figure [/| provides the phy-
logenetic tree for the four species as used in the UCSC
100-way MULTIZ alignment (http://hgdownload.cse.ucsc.edu/
goldenpath/hg38/multiz100way/), with branch lengths scaled
to average substitutions per genomic site (a measure of evo-
lutionary distance) [31].

B. Software baseline

We used LASTZ [17]] version 1.04.03 in its default set-
ting as our software baseline for WGA. Since LASTZ does
not have a multi-threaded mode, we parallelized LASTZ on

0.15
0.46 '_ Human
| 0.36

0.33 0.23 Chicken

L 0% JebraFine

Mouse

Fig. 7: Phylogenetic tree of the four vertebrate species with
branch lengths in substitutions/site.

a multi-core system by first dividing the target and query
genomes into smaller chunks of 10Mbp size, with successive
chunks overlapping by 10Kbp, and then performing LASTZ
alignments for each pair of target-query chunks using the
parallel utility in Linux. For performance evaluation, we
used an AWS c5.24xlarge instance, consisting of 96 vCPUs
and costing $4.08/hour, since it provided us with the best
LASTZ performance among all the other AWS instances. We
used the perf utility in Linux for profiling LASTZ, and used
the ——nogapped option when evaluating the seed-and-filter
throughput of LASTZ.

C. SegAlign Single-node evaluation

We implemented SegAlign’s GPU-accelerated seed-and-
filter stage in CUDA (version 10.2) and the remaining software
pipeline from reading the target and query sequences to
writing HSPs in output files in C++ and compiled using g++
(version 7.5.0) at —O4 optimization level. We used a bash
script to monitor the HSPs being generated by above, and
to spawn off a new LASTZ process, if an idle CPU core
is found. In order to perform the alignment extension for
the HSPs, the segment file is provided as input using the —
-segments option in LASTZ. This ensured that seeding,
filtering and extension stages were pipelined while keeping
all cores busy. We evaluated single-node speedup and costs
for computing the whole genome alignments in comparison
to LASTZ using 3 AWS GPU instances: p3.2xlarge (8 vC-
PUs, 1 GPUs, $3.06/hr), p3.8xlarge (32 vCPUs, 4 GPUs,
$12.24/hr), and p3.16xlarge (64 vCPUs, 8 GPUs, $24.48/hr),
with varying number of NVIDIA V100 GPUs and logical
cores. The performance across different species pairs was
evaluated on the p3.16xlarge instance. We also compared the
output of human-mouse alignments produced by LASTZ and
SegAlign using the R dotplot functionality as described in
the LASTZ documentation (http://www.bx.psu.edu/~rsharris/
lastzZREADME .lastz-1.04.03.html).

D. Multi-node evaluation

SegAlign’s seed-and-filter and extension phases were im-
plemented on a cluster of multiple GPU nodes using Apache
Spark (version 2.4.4). While we also plan to extend Se-
gAlign’s support for workflow management systems like
Cromwell [32]], we have found that the Spark framework
is extremely efficient and convenient for our use case. We
implemented two Python scripts, one for the seed-and-filter
phase and one for the extension phase. For the seed-and-
filter phase, the script divides the input target and query

http://hgdownload.cse.ucsc.edu/goldenpath/
http://hgdownload.cse.ucsc.edu/goldenpath/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/multiz100way/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/multiz100way/
http://www.bx.psu.edu/~rsharris/lastz/README.lastz-1.04.03.html
http://www.bx.psu.edu/~rsharris/lastz/README.lastz-1.04.03.html

mmon to SegAlign and LASTZ
nique to SegAlign
nique to LASTZ

mm10.chr1
0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08
L L L L

T T T T
1.0e+08 1.5e+08 2.0e+08 2.5e+08

hg38.chr1

— T T
0.0e+00 5.0e+07

0.

Fig. 8: Dot plot comparing SegAlign and LASTZ alignments
between the chromosome 1 of the human and mouse genomes.
SegAlign recovers every LASTZ alignment (i.e. no green
alignments are found).

genomes into their respective chromosomes and then generates
a bath of jobs which are specified using Spark’s Resilient
Distributed Datasets (RDDs). Each job consists of a target-
query chromosome pair to be filtered and the corresponding
segment files to be uploaded to a bucket in AWS Simple
Storage Service (S3). The jobs are then distributed to the slave
nodes using a mapper function and the output segment file
paths are collected by the master node. Once the seed-and-
filter phase completes, another script generates a set of jobs
in a similar manner, where each job specifies a segment file
to be extended using LASTZ.

We used AWS Elastic MapReduce (EMR) [21] to create
a GPU cluster and evaluate our scaling results. The cluster
used an m5.xlarge instance (4 vCPUs, $0.096/hr) as the master
node and p3.2xlarge instances for the slave nodes. We used
the YARN cluster manager which was configured with one
executor core, dynamic allocation disabled and 13GB driver
memory. For the seed-and-filter phase, the number of executors
was set to N for an N-node cluster along with 40GB executor
memory. The above settings ensured that a single SegAlign
process executed on, and owned the GPU device on a slave
node at a time. Similarly, for the extend phase, where the tasks
need to be distributed one per available vCPU, the number of
executors was set to 8N for an N-node cluster along with 5GB
executor memory.

For SegAlign’s weak scaling analysis, we aligned the human
genome with artificial genomes containing multiple copies of
mouse chromosome 1, in which for an N-node cluster, the
mouse chromosome 1 was replicated in the query genome N-
times.

V. RESULTS

A. SegAlign WGA Comparison to LASTZ

The dot plot in Figure [§] presents a qualitative view of the
alignments generated by SegAlign and how it compares to
the alignments generated by LASTZ. The alignments common
to SegAlign and LASTZ are represented by blue dots in the

800 16

600 -
B LASTZ

I SegAlign
- Speedup

Time (min)
-
=
=

0 - 0

hg38 - mm10

hg38 - galGal6 galGal6 - taeGut2

Fig. 9: LASTZ and SegAlign runtime comparison for different
vertebrate WGA. Speedup resulting from SegAlign is shown
in orange.

figure. Unique alignments generated only by SegAlign are
shown as red dots and the ones unique to LASTZ in green.
The plot did not have any green dots, implying that SegAlign
finds all the alignments that LASTZ does.

SegAlign provides more alignments than LASTZ because it
does not incorporate LASTZ’s diagonal hashing strategy [17].
This strategy requires seed hits to be processed sequentially,
which would be detrimental to the performance of the Se-
gAlign’s parallel seed hit extension on GPU. While we are
considering incorporating a parallel hashing strategy in the
future, the dot plot in Figure [§] shows that the concordance
between the two alignments is already very high.

B. Single-node Analysis

The plot in Figure [9] shows the runtime of LASTZ and
SegAlign for the 3 species pairs described in Section [[V-A]
As the product of the genome lengths of the species pair
decreases, the number of seed hits decreases, causing an
overall reduction in the WGA runtime for both LASTZ and
SegAlign. SegAlign reduces the WGA computation time from
the order of hours to minutes. Figure [J] also shows that
SegAlign’s speedup as compared to LASTZ remains within
the close range of 13.5x to 14x even as the evolutionary
distance between the species varies widely.

An analysis of SegAlign’s filtering stage showed that on
a single NVIDIA V100 GPU, it provides a throughput of
up to 305 million seed hits/sec, which is around 180x the
throughput provided by LASTZ on a single core of a modern
Intel Xeon processor. Figure [I0a shows the speedup and
cost improvement for seed-and-filter stage in human-mouse
WGA across different AWS instances. A similar speedup
and cost-comparison are done for the end-to-end pipeline
of SegAlign and the results are shown in Figure [I0b} In
both cases, the speedup increases almost linearly with the
number of GPUs in the instances mentioned in Section [V-C]
Efficient load-balancing using TBB and techniques described
in Section [[lI-DJ results in high CPU and GPU utilization over
the complete pipeline. As described in Section [III-D} as the
number of GPUs increases, their utilization tapers during the

2.4

\‘

2.2

> Speedup
- Cost Improvement

(2.1
1/8 4/32 8/64
Number of GPU/Number of CPU cores

(a)

2.4

2.2

> Speedup
- Cost Improvement

(2.1
1/8 4/32 8/64
Number of GPU/Number of CPU cores

(W)

Fig. 10: Speedup and cost analysis for human-mouse WGA on different AWS instances for (a) SegAlign’s seed-and-filter stage,

and (b) complete SegAlign pipeline.

Speedup

@ SegAlign
- Ideal

0 8 16 24 32 40 48 56 64 72
Nodes

Fig. 11: Strong scaling analysis for SegAlign’s multi-node
implementation for human-mouse WGA.

tail-end of the execution of the last few query intervals for a
particular target chromosome. The cost of the AWS instances
are proportional to the number of GPUs and since the scaling
is not perfect with the number of GPUs, the instance with a
single GPU is found to be most cost-efficient for the end-
to-end pipeline. Overall, the cost improvements lie within
a close range of 2.25-2.33x of LASTZ for both, seed-and-
filter stage, and the end-to-end pipeline. We verified with the
p3dn.24xlarge (96 vCPUs, 8 GPUs, $31.212/hr) instance that
increasing the number of CPU cores with 8 GPUs does not
have an effect on the speedup. This is because the pipeline is
not CPU-bound with the ratio of 8 CPU cores per GPU.

C. Multi-node Scaling Analysis

Figure [IT] shows strong scaling analysis for SegAlign.
SegAlign achieves a strong scaling efficiency of 93% with
32 nodes, which drastically reduces to 82% at 64 nodes. The
efficiency starts tapering off at 64 nodes mostly due to a

parallel slack — the entire WGA completed in 13 min, of which
the last 2 min were spent on the most trailing task. For this
given dataset, maximum possible speedup over the single node
cluster is bound to 170x, which is based on the maximum
runtime of a single task in seed-and-filter and extension phases.

Table |lI| shows the weak scaling analysis for SegAlign.
The weak scaling efficiency is 97.8% at 32 and lowers to
96% at 64 nodes. The compute in both phases, seed-and-filter
and extension, scale near perfectly but the inefficiencies arise
mostly due to increased communication from the slave nodes
to the master node. We still achieve a high scaling efficiency
since the compute to communication ratio is very high in
SegAlign. For example, for the given dataset, communication
latency and scheduler delays were found to vary between 1%
- 1.5% of the total runtime and it increased with an increase
in the number of nodes.

VI. RELATED WORK

Alignment algorithms for finding local regions of simi-
larity between the genomes of different species have been
extensively studied in the past. The Smith-Waterman algo-
rithm [24] provides an optimal approach for finding local
alignments, given a scoring matrix and gap penalties, but
is computationally intractable for most practical problems.
Many heuristic approaches have been developed as a result.
BLAST [33]] was the first algorithm to incorporate and pop-
ularize the seed-and-extend paradigm for protein-sequence
alignment and remains among the most cited computational
tools in history. Later versions of BLAST [34] modified the
original heuristic to seed-filter-extend, with an ungapped fil-
tering stage between the seeding and gapped extension stages,
that further improved its performance, particularly for long
DNA sequences. However, BLAST is rarely used for aligning
entire genomes of large sizes due to its poor performance and
large memory requirement [35]. Whole genome aligners, such
as MUMmer [36], AVID [37], BLASTZ [[16] and LASTZ [17]]
addressed these issues, and are also largely based on the

seed-filter-extend heuristic. LASTZ is a standard tool for
whole genome alignments, and has also been incorporated
in a number of multiple genome alignment tools, including
Cactus [38] and MULTIZ [39].

Hardware accelerators, including GPUs and FPGAs, have
also been studied in the context of cross-species homology
search and sequence alignment. A 2013 survey [40] reviews
many of these accelerators. Many CUDA implementations for
accelerating the BLAST algorithm exist. GPU-BLAST [41]
and cuBLASTP [29] accelerate BLAST protein sequence
alignment, while G-BLASTN [42] accelerates the BLAST
nucleotide sequence alignment using GPUs. In particular,
cuBLASTP implements ungapped extension in a manner sim-
ilar to SegAlign, however, SegAlign differs from cuBLASTP
in two significant ways: (i) SegAlign works with nucleotide
sequences and not protein sequences like cuBLASTP, and (ii)
SegAlign is a system designed to accelerate LASTZ, which,
as mentioned earlier, is a superior tool for cross-species whole
genome alignments compared to BLAST. Beyond BLAST,
many prior CUDA implementations have looked at acceler-
ating dynamic programming based sequence alignment algo-
rithms. CUDAlign [43]] can perform Smith-Waterman score
matrix computation on multi-GPU platforms and has been
evaluated for cross-species alignments. However, CUDAlign
has many limitations including (i) it only computes alignments
scores, and not the complete alignment path, and (ii) it can
only return highest-scoring alignment cells, which cannot
be used for discovering millions of homologous alignments
possible in whole genomes. LOGAN [44] is another recent
tool that accelerated the X-drop gapped alignment extension
on GPUs and has been evaluated for long read alignment.
While gapped alignment is not the dominant stage in LASTZ
and other whole genome aligners, it starts dominating once
the seeding and filtering stages are accelerated on GPUs, as
is the case with SegAlign. LOGAN could be used to further
accelerate SegAlign but this would require substantial changes
to LOGAN’s code, such as being able to support arbitrary
scoring matrices. This has been left for future work.

FPGA accelerators for BLAST include Mercury-
BLASTP [45], TimeLogic [46] and RC-BLAST [47].
An FPGA accelerator for whole genome alignment has
been studied in Darwin-WGA [48]]. However, Darwin-
WGA implemented on FPGA is slower in comparison
to LASTZ, since it modifies the LASTZ algorithm for
higher alignment sensitivity. Another GPU tool, called
MaxSubGenomeAlign [49], provides a slower implementation
than LASTZ but with higher sensitivity. SegAlign is not
aimed to address the sensitivity issues of LASTZ but to
serve as its high-performance, drop-in replacement in current
bioinformatics pipelines, such as Cactus and MULTIZ. To
our knowledge, SegAlign is the first hardware-accelerated
tool that accelerates LASTZ on commodity hardware. FPGAs
have also been extensively studied for accelerating dynamic
programming based sequence alignments [SO]-[52].

More recently, much work on hardware acceleration has
focused on read assembly using short [53]-[56] and long

10

[Genome size (Mbp) | Number of nodes | Time |
195 1 44m 25s
390 2 44m 27s
780 4 44m 43s
1560 8 45m
3120 16 45m 20s
6240 32 45m 23s
12480 64 46m 5s

TABLE II: Weak scaling analysis for SegAlign.

reads [27], [S7], [58]]. Long read assembly is similar to WGA
in that it also requires alignment of long sequences that could
be dissimilar (due to high error-rates in long read sequencing).
However, long read accelerators cannot be directly applied
for WGA since cross-species alignments can span millions
of bases, much longer than typical long reads, and incorporate
insertions and deletions reflecting evolutionary events that span
hundreds of bases, which are almost never encountered in long
reads.

VII. CONCLUSION AND FUTURE WORK

Whole genome alignments help us to realize the vast
potential of the large number of genomes being sequenced
and assembled to better understand evolution. The deluge of
species assemblies necessitates hardware acceleration. In this
paper, we describe SegAlign as a scalable tool to generate
WGAs using GPUs. SegAlign provides up to 14x speedup
with around 2.3 cost improvement over the state-of-the-art
software whole genome aligner, LASTZ, and can serve as a
drop-in replacement for many use cases. SegAlign also scales
on a cluster of multiple GPU nodes with high efficiency.

SegAlign has been integrated into the Cactus multiple
genome alignment tool [[15]] in its latest release (https://github.
com/ComparativeGenomicsToolkit/cactus/releases/tag/v1.2.0).
In the near future, we plan to generate thousand-way vertebrate
genome alignments using the SegAlign-integrated version
of Cactus. The order of magnitude acceleration provided
by SegAlign as shown in the paper should reduce the time
to generate such large multiple genome alignments from
several months to days, and thereby enable the computational
capacity to keep up with the sequencing rate in the coming
years.

VIII. CODE AVAILABILITY

SegAlign code is released under the MIT license and is
available at |https://github.com/gsneha26/SegAlign.

IX. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful feed-
back. We thank Glenn Hickey for reviewing the SegAlign code
and integrating it into the Cactus tool. We thank Hiram Claw-
son and Robert (Bob) Harris for helpful discussions. This work
was supported by the Stanford SystemX Alliance, DARPA
DSSoC, NVIDIA funding for YT, National Human Genome
Research Institute (NHGRI) award no. ROIHGO010485 to BP
and AWS research credits.

https://github.com/ComparativeGenomicsToolkit/cactus/releases/tag/v1.2.0
https://github.com/ComparativeGenomicsToolkit/cactus/releases/tag/v1.2.0
https://github.com/gsneha26/SegAlign

[1]

[2]

[3]

[4]

[5]

[6]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

REFERENCES

J. Armstrong, I. T. Fiddes, M. Diekhans, and B. Paten, “Whole-genome
alignment and comparative annotation,” Annual review of animal bio-
sciences, vol. 7, pp. 41-64, 2019.

O. Couronne, A. Poliakov, N. Bray, T. Ishkhanov, D. Ryaboy, E. Rubin,
L. Pachter, and I. Dubchak, “Strategies and tools for whole-genome
alignments,” Genome research, vol. 13, no. 1, pp. 73-80, 2003.

K. Lindblad-Toh, M. Garber, O. Zuk, M. F. Lin, B. J. Parker, S. Washietl,
P. Kheradpour, J. Ernst, G. Jordan, E. Mauceli, et al., “A high-resolution
map of human evolutionary constraint using 29 mammals,” Nature,
vol. 478, no. 7370, pp. 476-482, 2011.

M. Alexandersson, S. Cawley, and L. Pachter, “Slam: cross-species gene
finding and alignment with a generalized pair hidden markov model,”
Genome Research, vol. 13, no. 3, pp. 496-502, 2003.

A. Siepel, G. Bejerano, J. S. Pedersen, A. S. Hinrichs, M. Hou,
K. Rosenbloom, H. Clawson, J. Spieth, L. W. Hillier, S. Richards,
et al., “Evolutionarily conserved elements in vertebrate, insect, worm,
and yeast genomes,” Genome research, vol. 15, no. 8, pp. 1034-1050,
2005.

J. K. Schull, Y. Turakhia, W. J. Dally, and G. Bejerano, “Champagne:
‘Whole-genome phylogenomic character matrix method places myomor-
pha basal in rodentia,” bioRxiv, p. 803957, 2019.

J. W. Sahl, M. N. Matalka, and D. A. Rasko, “Phylomark, a tool to iden-
tify conserved phylogenetic markers from whole-genome alignments,”
Appl. Environ. Microbiol., vol. 78, no. 14, pp. 4884-4892, 2012.

J. Ma, L. Zhang, B. B. Suh, B. J. Raney, R. C. Burhans, W. J. Kent,
M. Blanchette, D. Haussler, and W. Miller, “Reconstructing contiguous
regions of an ancestral genome,” Genome research, vol. 16, no. 12,
pp- 1557-1565, 2006.

R. E. Green, E. L. Braun, J. Armstrong, D. Earl, N. Nguyen, G. Hickey,
M. W. Vandewege, J. A. S. John, S. Capella-Gutiérrez, T. A. Castoe,
et al., “Three crocodilian genomes reveal ancestral patterns of evolution
among archosaurs,” Science, vol. 346, no. 6215, p. 1254449, 2014.
NCBI, “Ncbi genome database.” http://www.ncbi.nlm.nih.gov/genome/,
2018.

G. K. C. of Scientists, “Genome 10k: a proposal to obtain whole-genome
sequence for 10 000 vertebrate species,” Journal of Heredity, vol. 100,
no. 6, pp. 659-674, 2009.

E. C. Teeling, S. C. Vernes, L. M. Ddvalos, D. A. Ray, M. T. P.
Gilbert, E. Myers, B. Consortium, et al., “Bat biology, genomes, and
the batlk project: to generate chromosome-level genomes for all living
bat species,” 2018.

H. A. Lewin, G. E. Robinson, W. J. Kress, W. J. Baker, J. Coddington,
K. A. Crandall, R. Durbin, S. V. Edwards, F. Forest, M. T. P. Gilbert,
et al., “Earth biogenome project: Sequencing life for the future of life,”
Proceedings of the National Academy of Sciences, vol. 115, no. 17,
pp. 4325-4333, 2018.

D. Karolchik, R. Baertsch, M. Diekhans, T. S. Furey, A. Hinrichs, Y. Lu,
K. M. Roskin, M. Schwartz, C. W. Sugnet, D. J. Thomas, et al., “The
ucsc genome browser database,” Nucleic acids research, vol. 31, no. 1,
pp. 51-54, 2003.

J. Armstrong, G. Hickey, M. Diekhans, A. Deran, Q. Fang, D. Xie,
S. Feng, J. Stiller, D. Genereux, J. Johnson, et al., “Progressive align-
ment with cactus: a multiple-genome aligner for the thousand-genome
era,” bioRxiv, p. 730531, 2019.

S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison,
D. Haussler, and W. Miller, “Human—-mouse alignments with blastz,”
Genome research, vol. 13, no. 1, pp. 103107, 2003.

R. S. Harris, Improved pairwise alignment of genomic DNA. PhD Thesis,
The Pennsylvania State University, 2007.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE micro, vol. 28,
no. 2, pp. 39-55, 2008.

Intel, “Intel® Threading Building Blocks.” |https://software.intel.com/
en-us/tbb, 2020.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56-65, 2016.

Amazon, “Amazon Elastic MapReduce.” https://aws.amazon.com/emr/,
2020.

11

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

S. L. Clarke, J. E. VanderMeer, A. M. Wenger, B. T. Schaar, N. Ahi-
tuv, and G. Bejerano, “Human developmental enhancers conserved
between deuterostomes and protostomes,” PLoS genetics, vol. 8, no. 8§,
p. 1002852, 2012.

M. Hiller, S. Agarwal, J. H. Notwell, R. Parikh, H. Guturu, A. M.
Wenger, and G. Bejerano, “Computational methods to detect conserved
non-genic elements in phylogenetically isolated genomes: application to
zebrafish,” Nucleic acids research, vol. 41, no. 15, pp. e151-e151, 2013.
T. F. Smith and M. S. Waterman, “Comparison of biosequences,”
Advances in applied mathematics, vol. 2, no. 4, pp. 482-489, 1981.

B. Ma, J. Tromp, and M. Li, “Patternhunter: faster and more sensitive
homology search,” Bioinformatics, vol. 18, no. 3, pp. 440—445, 2002.
NVIDIA, “NVIDIA® CUDA C++ Programming Guide.” https://docs.
nvidia.com/cuda/cuda-c-programming- guide/, 2019.

Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-
processor provides up to 15,000 x acceleration on long read assembly,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 199-213, ACM, 2018.

N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
cuda,” in GPU computing gems Jade edition, pp. 359-371, Elsevier,
2012.

J. Zhang, H. Wang, H. Lin, and W.-c. Feng, “cublastp: Fine-grained
parallelization of protein sequence search on a gpu,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 251—
260, IEEE, 2014.

C. E. Shannon, “A mathematical theory of communication,” Bell system
technical journal, vol. 27, no. 3, pp. 379-423, 1948.

A. Siepel and D. Haussler, “Phylogenetic estimation of context-
dependent substitution rates by maximum likelihood,” Molecular biology
and evolution, vol. 21, no. 3, pp. 468—488, 2004.

K. Voss, G. V. D. Auwera, and J. Gentry, “Full-stack genomics pipelining
with GATK4 + WDL + Cromwell [version 1; not peer reviewed],” 2017.
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of molecular biology,
vol. 215, no. 3, pp. 403-410, 1990.

S. F Altschul, T. L. Madden, A. A. Schiffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped blast and psi-blast: a new
generation of protein database search programs,” Nucleic acids research,
vol. 25, no. 17, pp. 3389-3402, 1997.

M.-S. Kim, C.-H. Sun, J.-K. Kim, and G.-S. Yi, “Whole genome align-
ment with blast on grid environment,” in The Sixth IEEE International
Conference on Computer and Information Technology (CIT’06), pp. 47—
47, IEEE, 2006.

A. L. Delcher, S. L. Salzberg, and A. M. Phillippy, “Using mummer
to identify similar regions in large sequence sets,” Current protocols in
bioinformatics, no. 1, pp. 10-3, 2003.

N. Bray, I. Dubchak, and L. Pachter, “Avid: A global alignment
program,” Genome research, vol. 13, no. 1, pp. 97-102, 2003.

B. Paten, D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, and D. Haussler,
“Cactus: Algorithms for genome multiple sequence alignment,” Genome
research, 2011.

M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. Smit, K. M.
Roskin, R. Baertsch, K. Rosenbloom, H. Clawson, E. D. Green,
et al., “Aligning multiple genomic sequences with the threaded blockset
aligner,” Genome research, vol. 14, no. 4, pp. 708-715, 2004.

S. Aluru and N. Jammula, “A review of hardware acceleration for
computational genomics,” IEEE Design & Test, vol. 31, no. 1, pp. 19-30,
2013.

P. D. Vouzis and N. V. Sahinidis, “Gpu-blast: using graphics processors
to accelerate protein sequence alignment,” Bioinformatics, vol. 27, no. 2,
pp. 182-188, 2011.

K. Zhao and X. Chu, “G-blastn: accelerating nucleotide alignment by
graphics processors,” Bioinformatics, vol. 30, no. 10, pp. 1384-1391,
2014.

F. d. O. Edans, G. Miranda, A. C. de Melo, X. Martorell, and
E. Ayguadé, “Cudalign 3.0: Parallel biological sequence comparison in
large gpu clusters,” in 2014 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp. 160-169, IEEE, 2014.

A. Zeni, G. Guidi, M. Ellis, N. Ding, M. D. Santambrogio, S. Hofmeyr,
A. Bulug, L. Oliker, and K. Yelick, “Logan: High-performance gpu-
based x-drop long-read alignment,” arXiv preprint arXiv:2002.05200,
2020.

https://software.intel.com/en-us/tbb
https://software.intel.com/en-us/tbb
https://aws.amazon.com/emr/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

A. Jacob, J. Lancaster, J. Buhler, B. Harris, and R. D. Chamberlain,
“Mercury blastp: Accelerating protein sequence alignment,” ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS), vol. 1,
no. 2, pp. 1-44, 2008.

T. B. Solisions, “Timelogic decypher blast engine introduction,” 2010.
K. Muriki, K. D. Underwood, and R. Sass, “Rc-blast: Towards a
portable, cost-effective open source hardware implementation,” in /9th
IEEE International Parallel and Distributed Processing Symposium,
pp.- 8—pp, IEEE, 2005.

Y. Turakhia, S. D. Goenka, G. Bejerano, and W. J. Dally, “Darwin-
wga: A co-processor provides increased sensitivity in whole genome
alignments with high speedup,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 359-372,
IEEE, 2019.

A. Aljouie, L. Zhong, and U. Roshan, “High scoring segment selection
for pairwise whole genome sequence alignment with the maximum
scoring subsequence and gpus,” International Journal of Computational
Biology and Drug Design, vol. 13, no. 1, pp. 71-81, 2020.

D. T. Hoang and D. P. Lopresti, “Fpga implementation of systolic
sequence alignment,” in International Workshop on Field Programmable
Logic and Applications, pp. 183-191, Springer, 1992.

Z. Nawaz, M. Nadeem, H. van Someren, and K. Bertels, “A parallel
fpga design of the smith-waterman traceback,” in 2010 International
Conference on Field-Programmable Technology, pp. 454—459, IEEE,
2010.

K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized and effi-
cient fpga-based skeleton for pairwise biological sequence alignment,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 4, pp. 561-570, 2009.

L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanovi¢, et al., “Fpga accelerated indel
realignment in the cloud,” in 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 277-290, IEEE,
2019.

K. Koliogeorgi, N. Voss, S. Fytraki, S. Xydis, G. Gaydadjiev, and
D. Soudris, “Dataflow acceleration of smith-waterman with traceback for
high throughput next generation sequencing,” in 2019 29th International
Conference on Field Programmable Logic and Applications (FPL),
pp. 74-80, IEEE, 2019.

Edico Genome, “Dragen bio-it platform..”

E. B. Fernandez, J. Villarreal, S. Lonardi, and W. A. Najjar, “Fhast:
Fpga-based acceleration of bowtie in hardware,” IEEE/ACM transactions
on computational biology and bioinformatics, vol. 12, no. 5, pp. 973—
981, 2015.

L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pp. 127-
135, IEEE, 2019.

P. Chen, C. Wang, X. Li, and X. Zhou, “Accelerating the next generation
long read mapping with the fpga-based system,” IEEE/ACM transactions
on computational biology and bioinformatics, vol. 11, no. 5, pp. 840-
852, 2014.

12

	Introduction
	Background
	Whole genome alignment algorithm (LASTZ)
	GPU execution model

	Implementation Details
	Seed Position table construction
	Seed-and-Filter stage design on GPU
	Extension stage using LASTZ
	Load balancing
	Multi-node implementation

	Methodology
	Species and genome data
	Software baseline
	SegAlign Single-node evaluation
	Multi-node evaluation

	Results
	SegAlign WGA Comparison to LASTZ
	Single-node Analysis
	Multi-node Scaling Analysis

	Related work
	Conclusion and Future Work
	Code availability
	Acknowledgement
	References

