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Abstract—Dynamically adaptive multi-core architectures have been proposed as an effective solution to optimize performance for
peak power constrained processors. In processors, the micro-architectural parameters or voltage/frequency of each core to be
changed at run-time, thus providing a range of power/performance operating points for each core. In this paper, we propose Thread
Progress Equalization (TPEq), a run-time mechanism for power constrained performance maximization of multithreaded applications
running on dynamically adaptive multicore processors. Compared to existing approaches, TPEq (i) identifies and addresses two
primary sources of inter-thread heterogeneity in multithreaded applications, (ii) determines the optimal core configurations in
polynomial time with respect to the number of cores and configurations, and (iii) requires no modifications in the user-level source
code. Our experimental evaluations demonstrate that TPEq outperforms state-of-the-art run-time power/performance optimization
techniques proposed in literature for dynamically adaptive multicores by up to 23%.

Index Terms—Multi-threaded applications, Thread progress, Power-constrained performance maximization.
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1 INTRODUCTION

T ECHNOLOGY scaling has enabled greater integration be-
cause of reduced transistor dimensions. Microprocessor

designers have exploited the greater transistor budget to
provision an increasing number of processing cores on the
chip, effectively using thread-level parallelism to increase
performance. However, the power consumption per tran-
sistor has not been scaling commensurately with transistor
dimensions [11]. This problem is compounded by the so-
called “power wall,” a hard limit on the maximum power
that a chip can draw. A critical challenge, in this context,
is to devise techniques that maximize performance within a
power budget. One solution to this problem is fine-grained,
dynamic adaptation at run-time. Broadly speaking, dynamic
adaptation refers to the ability to dynamically distribute the
available power budget amongst the cores on a multicore
processor.

The traditional approach for fine-grained dynamic adap-
tation is based on dynamic voltage and frequency scaling
(DVFS), in which the voltage and frequency of each core
(or group thereof) can be adjusted dynamically, providing
a range of power/performance operating points. Moreover,
recent work has advocated the use of micro-architectural
adaptation, in which the micro-architectural configuration
of each core to be adjusted dynamically (issue width, re-
order buffer size and cache capacity etc.), which is par-
ticularly effective in the context of “dark silicon” era [11]
where the power budget is constrained but transistors
are abundant. Although the techniques proposed in this
paper are described in the context of micro-architectural
adaptation, they are equally applicable for DVFS and we

provide experimental results for both dynamic adaptation
techniques.

To perform fine-grained dynamic adaptation, the oper-
ating system has to solve a challenging global optimization
problem, i.e., how to determine the configuration of each
core so as to maximize performance within the power
budget. The problem is challenging for three reasons: (i)
the solution must scale efficiently to multicore systems
that have tens or even hundreds of cores; (ii) there is a
complex relationship between core configurations and the
corresponding power/performance of the thread running
on the core (this is particularly true for micro-architectural
adaptation); and, (iii) for multithreaded applications, there
is no direct performance metric to maximize, i.e., it is
unclear how speeding up a single thread will affect the
performance of the application as a whole. These are the
challenges that we address in this paper.

For sequential (i.e., single-threaded) applications, in-
structions per second (IPS) is a clear, measurable indicator of
performance. Moreover, for multiprogrammed workloads,
the IPS summed over all threads indicates net throughput,
and is a commonly used performance metric [15], [18], [28].
However, for multithreaded applications, the sum of IPS
metric can be a poor indicator of performance. For example,
a thread that is spinning on a lock or waiting at a barrier
might execute user-mode synchronization instructions, but
these do not correspond to useful work. The problem is
heightened by the fact that programmers exploit parallelism
in different ways — for example, using data-level paral-
lelism with barrier synchronization, or task-level parallelism

ar
X

iv
:1

60
3.

06
34

6v
1 

 [
cs

.D
C

] 
 2

1 
M

ar
 2

01
6



2

with local/global task queues and static/dynamic load bal-
ancing.
Key Contributions In this paper, we propose Thread Progress
Equalization (TPEq), a run-time mechanism to maximize
performance within a power budget for multithreaded ap-
plications running on multicore processors with per-core
dynamic adaptation. The design of TPEq is motivated by
multithreaded applications that make frequent use of barrier
synchronization, but also generalizes, as we later discuss, to
other models of parallelism.

We start with the observation that, to best utilize the
available power budget, all threads that are expected to
synchronize on a barrier should arrive at the barrier at the
same time. If this is not the case, early threads (threads that
arrive at a barrier earlier than others) can be slowed down
and the power saved by doing so can be allocated to speed-
up lagging threads (threads that arrive at a barrier later than
others). In this context, a natural question is why threads
arrive at barriers at different times.

Empirically, we have observed two fundamental reasons
for differences in the times at which threads arrive at bar-
riers. First, even if each thread executes exactly the same
sequence of instructions, threads can have different instruc-
tions per cycle (IPC) counts. For example, the sequence of
data accesses that one thread makes can have less spatial
locality than another thread’s accesses, resulting in more
cache misses and lower IPC for the first thread. We refer to
this as IPC heterogeneity. Second, each thread might execute
a different number of instructions until it reaches a barrier.
This is because the threads need not be inherently load
balanced and depending on the input data, each thread can
follow a different control flow path until it arrives at the
barrier. We refer to this as instruction count heterogeneity.

Figure 1 shows an example of two benchmark appli-
cations, FFT and Water.Nsq (SPLASH-2 [47]), executing on
a homogeneous multicore processor. FFT exhibits IPC het-
erogeneity but no instruction count heterogeneity, i.e., each
thread executes exactly the same number of instructions be-
tween barriers. Water.Nsq exhibits both IPC heterogeneity,
evident from different slopes of threads in progress plot, and
instruction count heterogeneity. Note that over the entire
length of the application, thread T16 executes more than
1.15× the number of instructions compared to thread T7.

The goal of TPEq is to dynamically optimize the config-
uration of each core/thread such that each thread reaches
the barrier at the same time by simultaneously accounting
for both IPC and instruction count heterogeneity The design
of TPEq is based on two components that operate synergis-
tically:

• TPEq Optimizer: Given an oracle that can predict (i)
the IPC and power consumption of each thread for
every core configuration, and (ii) the total number of
instructions the thread must execute until the next
barrier, we propose and an efficient polynomial-time
algorithm that optimally determines the core con-
figuration for each thread to maximize application
performance under power constraints.

• TPEq Predictors: As input to the TPEq Optimizer, we
implement accurate run-time predictors for (a) IPC
and power consumption of a thread for different core
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Fig. 2: Overview of TPEq approach on a dynamically adap-
tive multicore processor.

configurations, and (b) the number of instructions
each thread executes between barriers.

TPEq is evaluated in the context of the Flicker [33]
architecture, a recently proposed multicore processor
design that supports dynamic adaptation of the micro-
architectural parameters of each core. We compare TPEq to
a number of existing techniques for power/performance
optimization of multithreaded applications.

Distinguishing Features of TPEq: Compared to existing
state-of-the-art approaches, TPEq has the following
distinguishing features: (i) TPEq holistically accounts for
both IPC and instruction count heterogeneity, while a
number of other approaches only address one or the other;
(ii) TPEq enables fine-grained adaptation for multicore
processors where each core has multiple configurations;
(iii) the TPEq optimizer provides optimal solutions
in polynomial time, as opposed to other fine-grained
optimization techniques that solve NP-hard problems and
cannot achieve optimal results in less than exponential time;
(iv) TPEq requires no software annotations or programmer
specified progress metrics; and (v) TPEq generalizes to
multithreaded applications that exploit different models of
parallelization, including barrier synchronization, pipeline
parallel and thread pool models with dynamic load
balancing.

2 TPEQ DESIGN AND IMPLEMENTATION

Figure 2 shows an overview of the design of TPEq. The hard-
ware platform consists of a dynamically adaptive multi-
core architecture where, for example, each core can have
a variable ROB size and the fetch width. In general, we will
assume that each of the N cores can be set in one of M
different configurations as described in Table 1. In its current
implementation, TPEq assumes that the number of threads
equals the number of cores, and a static mapping of threads
to cores [48]. We believe TPEq can be extended to the case
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Fig. 1: Progress plots for the FFT and Water.Nsquared (SPLASH-2) benchmarks with 16 threads on a 16-core architecture.
The solid vertical lines indicate barriers. Slope corresponds to IPS of that thread and hence the flat regions indicate time
periods when the thread is stalled waiting for lagging threads to arrive.

where there are more threads than cores [35], but leave that
as a topic for future work.

The TPEq run-time system consists of two components.
The TPEq predictors monitor on-chip performance coun-
ters and predict the future application characteristics. The
predictions are passed on to the TPEq optimizer, which
determines the optimal configuration of each core so as
to maximize overall system performance within a power
budget. We now describe the design and implementation of
TPEq.

2.1 TPEq Optimizer

The TPEq optimizer is at the heart of TPEq approach.
Although, in practice, the optimizer takes inputs from the
TPEq predictor, we will discuss the optimizer in the context
of an oracle that provides the optimizer with perfect infor-
mation and relax this assumption later.

To understand how the optimizer works, assume that we
begin at the time instant when N threads exit a barrier and
start making progress towards the next barrier. The optimal
configuration for each core/thread needs to be decided for
the interval between these two successive barriers. Assume
that an oracle provides access to the following information:

• The number of instructions each thread executes
until it enters the next barrier is in ratio w(1) : w(2) :
. . . : w(N). Note that w(1), w(2), . . . , w(N) can be
absolute instruction counts, but we only require the
number of instructions each thread executes relative
to other threads.

• The CPI of thread i (1 ≤ i ≤ N ) when it executes
on a core with configuration j (1 ≤ j ≤ M ) is
CPI(i, j), and the corresponding power dissipation
is P (i, j). We assume, for now, that for a given core
configuration, the CPI and power dissipation of each
thread do not change with time, at least until it
reaches the next barrier. This assumption is relaxed
later.

Under the assumptions above, TPEq tries to assign a
configuration to each core/thread so as to stay within power
budget Pbudget, while minimizing the time taken by the
most lagging thread to reach the next barrier. A key con-
tribution of our work is an algorithm that optimally solves
this problem in O(MN logN) time.

The algorithm works as follows: TPEq starts by setting
all cores to the configuration that consumes the least power
and determines the identity of the most lagging thread for
this setting, i.e., the thread that would reach the barrier last.
For thread i, the number of clock cycles required to reach
the barrier when executing on configuration j would be
w(i)CPI(i, j). We define the progress of this thread as:

progress(i) =
1

w(i)CPI(i, j)

to capture the intuition that larger values of “progress” are
better.

The configuration of the most lagging thread is then
moved up to the next level1, and the new most lagging
thread is determined. The core configuration for this new
most lagging thread is now moved up by one level, and so
on. This continues until there is no core whose configuration
can be increased to the next level without violating the
power budget. The resulting core configurations are optimal
in terms of total execution time and are then updated
in hardware. Algorithm 1 is a formal description of this
optimization procedure.

We now provide a formal proof of optimality for this
algorithm below.
Proof of optimality (by contradiction): Let C =
<c(1) c(2) ... c(N)> be the TPEq configuration vector of
cores for N threads, such that c(1) corresponds to the
core configuration of thread 1, c(2) corresponds to the core

1. Without loss of generality, the configurations are, by convention,
sorted in ascending order of power consumption. Also, we limit the
search to Pareto optimal configurations, by simply discarding ones where
increasing power does not lead to increased performance.
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Algorithm 1: TPEq Optimization Procedure

1 Ptot ← 0;
// Init. all threads to lowest core

config.
2 for i ∈ [1, N ] do
3 c(i)← 1;
4 Ptot ← Ptot + P (i, c(i));
5 progress(i)← 1

w(i)CPI(i,c(i)) ;
6 end
7 while Ptot ≤ Pbudget do

// Determine lagging thread l

8 l← argmini∈[1,N ],c(i)<M

{
1

w(i)CPI(i,c(i))

}
;

// If no such thread exists
9 if l = ∅ then

10 break;
11 end

// Increase core configuration of
lagging thread

12 c(l)← c(l) + 1;
// Update progress and power

13 progress(l)← 1
w(l)CPI(l,c(l)) ;

14 Ptot ← Ptot − P (l, c(l)− 1) + P (l, c(l));
15 end
// Return optimal core configurations

16 return c;

configuration of thread 2, and so on. Let Ptot be the total
power consumption with configuration vector C, such that
Ptot ≤ Pbudget. Let progress(i, c(i)) denote the progress of
thread i with core configuration c(i) and min progress(C)
denote the progress of the most lagging thread with config-
uration vector C . Since only Pareto optimal configurations
are considered, progress(i, c(i)) > progress(i, c∗(i)) =⇒
P (i, c(i)) > P (i, c∗(i)). Now assume a better configuration
vector C*=<c∗(1) c∗(2) ... c∗(N)> with total power P ∗tot
within same power budget exists i.e min progress(C∗) >
min progress(C) and P ∗tot ≤ Pbudget.

First, consider a case in which TPEq does not assign a
configuration to any thread that is larger than the optimal
configuration i.e c(i) ≤ c∗(i) ∀i ∈ [1, N ]. This also implies
that Ptot ≤ P ∗tot. Without loss of generality, assume that
first K threads have strictly larger core configurations in
the optimal assignment i.e c(i) < c∗(i) ∀i ∈ [1,K] and
the remaining threads have same configurations as TPEq
c(i) = c∗(i) ∀i ∈ [K +1, N ]. If the most lagging thread l for
configuration C was in the first K threads, the algorithm 1
would not terminate as it is possible to increase core config-
uration of thread l to c∗(l) and remain within total power
P ∗tot (and therefore, Pbudget). If l ∈ [K + 1, N ], c(l) = c∗(l)
and therefore, min progress(C) ≥ min progress(C∗).
This is a contradiction.

Next, consider a case in which TPEq assigns a con-
figuration to a thread j that is larger than the op-
timal configuration i.e. c(j) > c∗(j). This implies
progress(j, c(j)) > progress(j, c∗(j)). But since TPEq
only accelerates the most lagging thread in each itera-
tion and since TPEq assigned thread j to c(j), which is

larger than c∗(j), min progress(C) ≥ progress(j, c(j)).
This implies min progress(C) ≥ progress(j, c∗(j)) ≥
min progress(C∗). Again, a contradiction. Therefore, TPEq
configuration is optimal.
Min-heap Based Implementation: A naive implementation
of the TPEq optimization algorithm (Algorithm 1) would
use a linear array to store the progress metric of each
thread (line 12), resulting in a O(MN2) time complexity.
However, note that in each iteration of Algorithm 1, we
only update the progress of the currently slowest thread, i.e.,
least progress. Based on this observation, we propose an im-
proved implementation of Algorithm 1 with O(MN logN)
that stores the progress metric of each thread in a min-heap
data-structure. A min-heap is a binary tree where the data
in each node is less than or equal to its children.

In the proposed implementation, setting up the min-
heap data structure takes O(logN) time (line 4), determin-
ing the currently most lagging thread takes O(1) time (line
8), and updating the progress metric of the lagging thread
and reinserting it back into the heap takes O(logN) time
(line 12). Finally, the outermost while loop iterates at most
MN , resulting in a time complexity of O(MN logN).
Epoch Length In practice, the TPEq optimization routine is
called once every epoch in order to address fast variations
in thread characteristics. The epoch length (E , measured in
number of clock cycles) is configurable. The epoch length
should be short enough to quickly adapt to CPI and power
variations, but is practically limited by the computational
overhead of the optimization procedure. In this context, the
polynomial time complexity of the TPEq optimizer, which
counts for less than 1% run-time overhead for a 1 ms
epoch, enables the use of relatively fine-grained temporal
adaptation that would be otherwise impractical.

Note that since epochs are not necessarily synchro-
nized with barriers, in practice we need a slightly updated
progress metric from the one used in Algorithm 1. There-
fore, the progress of a thread is measured in terms of its
predicted progress by the end of the current epoch:

progress(i) =
instrCount(i)

w(i)
+

E
w(i)CPI(i, c(i))

, (1)

where the first time represents progress made so far and the
second term represents predicted progress in the next epoch.

2.2 TPEq Predictors
In the previous sub-section we assumed that the TPEq
optimizer has oracular knowledge of the relative instruction
counts of the threads. In practice, the TPEq predictors deter-
mine these values at run-time for each thread immediately
after a synchronization related stall. TPEq also requires pre-
dictions for CPI and power consumption of each thread for
every core configuration once every epoch, i.e., in synchrony
with the TPEq optimization procedure.

2.2.1 Relative Instruction Count Prediction
We start by describing the relative instruction count predic-
tor. The instruction count predictor predicts the number of
instructions each thread executes relative to other threads.
Our predictor is based on the observation that the number
of instructions each thread executes between barriers, relative to
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other threads, remains the same. This motivates the use of a
history based predictor to predict relative instruction counts.

Intuitively, we note that the difference in relative in-
struction counts of several multithreaded workloads arise
as a result of imbalance in the amount of computing for
a thread, which persists across several barriers. Singh et
al. [41] were perhaps the first to qualitatively observe the
locality in the data distribution in threads across successive
barriers in many of our benchmark algorithms and provide
insights into this characteristic. They noted that successive
barriers correspond to very small “time-steps” in the physi-
cal world, and that the characteristics of the physical world
change slowly with time. Hence, the amount of work to be
performed by a thread in one time-step, is a good predictor
for the amount of work in the next time-step. In the progress
plot for Water.Nsq (see Figure 1b), for instance, the number
of water molecules per thread remain nearly constant across
barriers. Consequently, thread T16 (T7), with most (least)
number of water molecules, always executes the most (least)
instructions in any inter-barrier interval.

Quantitatively, we have verified this trend over all bar-
rier synchronization based benchmarks in the SPLASH-2,
PARSEC and Phoenix benchmarks suites (see Table 3 for
more details) that we experimented with. In particular,
Figure 3 shows the a scatter plot of relative instruction
counts in barrier phase t + 1 versus the relative instruction
counts of threads in barrier phase t across all benchmarks
with instruction count heterogeneity (coded in different
colors). The mean absolute relative error using a last-value-
predictor for relative instruction counts was found to be
only 4.2%. Liu et al. [27] have observed similar locality
behaviour across the outermost loops of the SpecOMP par-
allel applications, and use last-value prediction to perform
voltage/frequency scaling for each thread. However, there
are significant differences between their work and ours and
these are discussed in Section 5.
Implementation Details The TPEq relative instruction
count predictor keeps a running count of the number of
user mode instructions executed by a thread. The relative
instruction count, w(i), of each thread is updated with its
running count at the end of any synchronization related
stall. This technique is simple, requires no synchronization
between threads to detect barriers and avoids the need for
the user to indicate when barriers occur.

In our scheme, if an application has only barrier related
synchronization, all threads will update as they exit the
barriers. In addition, the weight in any inter-barrier interval
will automatically correspond to the average number of
instructions per barrier executed by the thread so far. In fact,
TPEq does not distinguish barrier related stalls from other
synchronization stalls such as ones due to critical sections.
For one, barriers can be implemented using other syn-
chronization primitives as well, including locks [32], which
we would like to capture. As well, taking into account all
synchronization related stalls introduces certain advantages
that will be discussed in later sections.

Any synchronization related stall detection mechanism
can be used to determine when these stalls occur. Hardware
based thread progress metrics have been proposed [24] to
detect threads that are spinning on locks or waiting at
barriers. These solutions are the most general but suffer
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Fig. 3: Scatter plot of predicted and actual relative instruc-
tion counts between successive barriers for different bench-
marks.

from false positives and true negatives, resulting in incor-
rect optimization decisions. Alternatively, software based
solutions can be implemented, either using programmer or
compiler inserted annotations, or by modifying the thread-
ing library and OS synchronization primitives [8]. We adopt
the latter approach. As in [8], we detect scenarios in which
the threads are stalled due to synchronization and update
our predictors with current relative instruction counts while
exiting the stall.

2.2.2 CPI and Power Prediction

We now describe the CPI and power predictors that we use
in TPEq which, as shown in Figure 4, are called once every
epoch.

Let CPIt(i, j) be the CPI of thread i on core config-
uration j in epoch t. The goal of the CPI predictor is to
determine CPIt+1(i, j) for all j ∈ [1,M ]. Duesterwald et
al. [9] have shown that for predicting the CPI in the next
epoch assuming the same core configuration, i.e., charac-
terizing temporal variability in CPI, last-value predictors
perform on a par with exponentially-weighted mean, table-
based and cross-metric predictors. The accuracy of last-
value predictors improves for shorter prediction epochs. We
choose to use a last-value predictor in TPEq because of its
simplicity, and because we are able to afford relatively short
epoch lengths. The last-value predictor simply implements:

CPIt+1(i, j) = CPIt(i, j).

To predict CPIt+1(i, k) for all k 6= j given CPIt+1(i, j)
, we need an approach that predicts the performance on one
core type given performance on another core type. For this,
TPEq uses CPI stack information measured using hardware
counters broken down into four components: compute CPI
(base CPI in the absence of miss events), memory CPI
(cycles lost due to misses in the memory hierarchy), branch
CPI (cycles lost due to branch misprediction) and synchro-
nization CPI (cycles lost due to stalls on synchronization
instructions).

With these measurements on configuration j, we predict
the CPI on configuration k using a linear predictor as
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follows:

CPIt(i, k) = αcomp
jk CPIcomp

t (i, j) + αmem
jk CPImem

t (i, j)

+αbranch
jk CPIbrancht (i, j) + αsynch

jk CPIsyncht (i, j).

The pairwise α∗jk parameters, one for every pair of core
configurations, are learned offline using training data ob-
tained from a set of representative benchmarks and stored
for online use. Note that the learned parameters are not
benchmark specific and depend only on the core configu-
rations.

A similar linear predictor that utilizes CPI components
was proposed by Lukefahr et al. [29], although only for big-
little core configurations. Another CPI predictor is PIE [45],
which makes use of information collected using hardware
counters including the total CPI, CPI of memory instruc-
tions, misses per instruction (MPI), and data dependencies
between instructions. However, PIE has been proposed for
CPI prediction between small in-order and large out-of-
order cores, while TPEq also requires predictions between
different out-of-order core configurations and also faces the
challenge of predicting over future epoch. Furthermore,
since training the TPEq predictor is automated and data-
driven, it is easy to deploy for a large number of core
configurations.

We note that existing processors such as the Intel Pen-
tium 4 [43] and the IBM POWER5 [26] have built-in hard-
ware support for performance counters that measure CPI
components. In addition, Eyerman et al. [12] have proposed
a performance counter architecture that further improves
upon the accuracy of these commercial implementations
with similar hardware complexity. Their approach provides
very accurate estimates of the CPI stack components with
only 2% average absolute error.

The TPEq power predictor uses the predicted CPI values
for each core configuration (as described above) to predict
their power consumption. This is based on previous work
which indicates that that CPI (or IPC) is highly correlated
with power consumption [3], [7]; for instance, Bircher and
John report on average only 3% error when compared to
measured CPU power [3]. Indeed, we empirically verified
that incorporating more fine-grained data like the individ-
ual CPI stack components did not improve the accuracy of

power prediction significantly. However, we did observe
that moving from a simple linear predictor to a quadratic
model did improve accuracy. Thus, the TPEq power predic-
tor predicts the power consumption for different core types
as follows:

P (i, j) = β0,j +
β1,j

CPI(i, j)
+

β2,j

CPI(i, j)
2

where β0,j , β1,j , and β2,j are fixed parameters that are
learned for each core type offline and stored for online use.

2.3 Implementation Details

The TPEq optimization and prediction routines are imple-
mented in software. The primary hardware overhead that
TPEq introduces is the hardware required to track the CPI
stack components. As mentioned before, existing commer-
cially available processors such as the Intel Pentium 4 and
IBM POWER5 already have hardware performance counters
to measure CPI stack components.

Based on the design proposed by Eyerman et al. [12], we
estimate the hardware overhead for TPEq as follows: (i) one
global 32-bit register and counter per CPI stack component
(five registers/counters in all), (ii) a shared front-end miss
table (sFMT) with as many rows as number of outstanding
branches supported, an ROB ID and local branch mispre-
diction penalty counter per-row, and a shared I-cache/TLB
miss counter, (iii) a back-end miss counter for D-cache/D-
TLB misses; and (iv) a long latency functional unit counter.
The counters in (ii), (iii) and (iv) are all local counters and
only need to count up to the maximum miss penalties for
their respective events.

The TPEq prediction and optimization procedures are
invoked by the OS in every epoch using an interrupt. The
CPI stack values on each core are stored to shared memory,
after which one core, designated as the leader, reads these
values, performs CPI and power predictions and determines
the optimal core configurations. All other cores are stalled
in this period. Finally, the configuration of each core is
updated based on the optimal configurations and control
is passed back to user code. In the empirical results section,
we quantify all the execution time overheads of the TPEq
procedures.

2.4 Comparative Analysis of TPEq

To provide more insight into our proposed approach, we
compare TPEq qualitatively to three state-of-the-art ap-
proaches for maximizing the performance of multi-threaded
applications.
Criticality Stacks (CS): Criticality Stacks [8] is a recently
proposed metric for thread criticality that measures the
amount of time in which a thread is active (not stalled due
to synchronization) in each epoch divided by the number
of other threads active in the same epoch. Intuitively, the
most critical thread is one that is active while all others are
stalled.

TPEq incorporates a notion of criticality similar to that of
CS through the weights w(i). Threads that spend more (less)
time stalled will have lower (higher) w(i) values for TPEq,
and similarly, lower (higher) criticality values in CS. The



7

Configuration Dispatch width ROB size Integer ALUs
1 1 16 1
2 2 32 3
3 2 64 3
4 4 64 6
5 4 128 6

Number of cores: 16, Number of threads: 16 (1 thread/core)
Frequency: 3.5 GHz, Voltage: 1.00 V, 22nm Technology Node
L1-I cache: 128 KB, write-back, 4-way, 4-cycle
L1-D cache: 128 KB, write-back, 8-way, 4-cycle
L2 cache: private 256 KB, write-back, 8-way, 8-cycle
L3 cache: 8 MB shared/4 cores, write-back, 16-way, 30-cycle
Cache coherence: directory-based MSI protocol
Floating point units: 2, Complex ALUs: 1

TABLE 1: Microarchitectural adaptation configurations

numbers will not be identical though, since the time spent
in active state is weighted differently in the two approaches.

Most importantly, CS is a coarse-grained optimization
techniques, in that it only accelerates the “most-lagging”
thread. In contrast, the TPEq optimizer performs fine-
grained optimization based on the progress metric and
weight of every thread, and is therefore able to best utilize
the available power budget.

We note that CS is itself a generalization of Age-based
Scheduling [22] (AGETS), in which the thread which has
executed the least number of instructions relative to other
threads is sped up on a faster core. Although we also
implemented and experimented with AGETS [22], we found
that CS outperformed AGETS across all the benchmarks we
studied, so we do not report any data for AGETS in this
paper.
MaxBIPS: Maximizing sum-IPS [18] is a commonly used
(and intuitive) objective for applications where the threads
are independent — multiprogrammed workloads, for exam-
ple, or multithreaded benchmarks with dynamically load
balanced task queues and task stealing [15]. Like TPEq (and
unlike CS), MaxBIPS can be used for fine-grained optimiza-
tion of core configurations. However, the primary problem
with MaxBIPS in the context of multi-threaded benchmarks
is that it has no notion of thread synchronization and does
not take thread criticality into account.
Bottleneck Identification and Scheduling: Bottleneck Iden-
tification and Scheduling [19] (BIS) annotates critical sec-
tions in the code and uses these annotations to determine
and accelerate bottlenecks, i.e., performance critical threads,
at run-time. As opposed to the previously discussed tech-
niques, BIS does require access to source code, and, at least
for a set of benchmarks evaluated, CS performs at least as
well as BIS [8].

Nonetheless, we believe techniques such as BIS, and
its updated version UBA [20], are orthogonal to and can
be used in conjunction with TPEq. For example, threads
that have BIS-based criticality greater than a threshold can
be assigned to the highest core configuration, while the
remainingN−1 cores configurations can be optimized using
TPEq. We leave this as future work.

3 EXPERIMENTAL SETUP

Our empirical evaluation of TPEq is based on the Sniper [5]
multicore simulator for x86 processors. We augment Sniper

Conf. 1 Conf. 2 Conf. 3 Conf. 4 Conf. 5
IPC 0.65 1.06 1.13 1.27 1.36

Power (W) 3.93 5.43 5.56 6.51 6.69

TABLE 2: Maximum IPC and power observed for different
configurations using Swaptions.

Category Workload Benchmark Suite
Homogeneous (HO) Blackscholes PARSEC

Canneal PARSEC
FFT SPLASH-2
Ocean.cont SPLASH-2
Radix SPLASH-2
Streamcluster PARSEC
Swaptions PARSEC

Heterogeneous (HT) Barnes SPLASH-2
Fluidanimate PARSEC
LU.cont SPLASH-2
LU.ncont SPLASH-2
Water.nsq SPLASH-2
Water.sp SPLASH-2
Bodytrack PARSEC
Kmeans Phoenix

TABLE 3: Barrier synchronization based benchmarks classi-
fied as either homogeneous or heterogeneous.

with our TPEq code and our patch that enables dy-
namic adaption of hardware parameters, including front-
end pipeline width and reorder buffer (ROB) size, and
scripts for the other state-of-the art techniques we compare
against. For power estimation, we use McPAT [23], which is
seamlessly integrated with Sniper.

We model a processor with 16 cores and an 80W power
budget. The relevant core/uncore micro-architectural pa-
rameters are shown in Table 1. Each core can pick from one
of five different configurations which are also listed in Ta-
ble 1. We note that in our experiments, the issue queue and
load-store queue are scaled automatically with ROB size,
since in Sniper all three are governed by a single parameter
“window size”). Table 2 shows the maximum observed IPC
and power values over all epochs for different static core
configurations using Swaptions benchmark. Finally, in all
experiments, the epoch length is set to 1 ms (3.5 million
clock cycles at the baseline clock frequency of 3.5 GHz).

The workloads used in our experiments are multi-
threaded applications from the PARSEC [2], SPLASH-2 [47]
and Phoenix [37] benchmark suites. We have included 18
out of 22 benchmarks in SPLASH-2 and PARSEC combined,
excluding only the ones which we had compilation or run-
time issues with Sniper.

Table 3 shows the subset of the benchmarks that exten-

Category Workload Benchmark Suite
Thread pool (TP) Cholesky SPLASH-2

Radiosity PARSEC
Pipeline Parallel (PP) Dedup PARSEC

Ferret PARSEC
MapReduce (MR) Histogram Phoenix

Linear regression Phoenix
Matrix multiply Phoenix
String match Phoenix
Word count Phoenix

TABLE 4: Benchmarks using alternative approaches to par-
allelization.
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(a) TPEq compared to CS and MaxBIPS
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(b) Benefits of relative instruction count prediction (weights).

Fig. 5: (a) Speed-up of TPEq and MaxBIPS using the execution time of CS as baseline. Also shown is MAXBIPS-heuristic. (b)
Speed-up of TPEq with respect to TPEq without relative instruction count prediction (TPEq-W), i.e., where all the weights
are set to one.

sively make use of barrier synchronization for paralleliza-
tion. These are the benchmarks for which we expect TPEq to
perform the best, since it is designed keep barrier synchro-
nization based parallelism in mind. These benchmarks are
further classified as: (i) homogeneous benchmarks: threads
execute the same number of instructions between barriers;
(ii) heterogeneous: threads execute the same number of
instructions between barriers relative to each other.

Table 4 show the remaining benchmarks that use other
types of parallelism. We classify these as follows: (i) thread
pool: a number of independent tasks are organized in a
shared or distributed queues and a thread requests a new
task from the task queue after it completes the previous
task; (ii) pipeline parallel: groups of threads executing dif-
ferent stages in a software pipeline on an incoming stream
of data, with task queues between pipeline stages and
(iii) mapreduce: different threads independently executing
“map” functions on incoming data before synchronizing on
the reduce thread.

We note that Bodytrack from PARSEC and kmeans from
Phoenix that are both classified as barrier-based, actually
use mixed modes of parallelism: barriers across iterations,
but thread pool and mapreduce parallelism within barriers,
respectively. Other mapreduce benchmarks used in this
paper have a single “reduce” operation towards the end of
execution.

Although TPEq is not designed keeping the character-
istics of the benchmarks in Table 4 in mind, we nonethe-
less also compare CS and MaxBIPS with TPEq on these
benchmark applications. In fact, for the thread pool and
mapreduce benchmarks, we expect MaxBIPS to perform the
best. However, we find that TPEq is, in fact, competitive
with, and in some cases outperforms, MaxBIPS for these
benchmarks as well.

Sixteen parallel threads were used for each benchmark
except Dedup and Ferret, which allow only 14 parallel

threads (we note, however, Dedup and Ferret are not barrier
synchronization based benchmarks, which are the main
focus of this work). For 16 parallel threads, the PARSEC
benchmarks also launch a 17th “initialization” thread that
executes by itself on a core at the highest power and per-
formance configuration. For a fair comparison, we report
execution times starting from the time when parallel threads
are first launched to the end of program execution.

4 EXPERIMENTAL EVALUATION

We have compared TPEq with state-of-the-art techniques
discussed in Section 2.4. We briefly describe our implemen-
tation of these techniques.
Criticality Stacks (CS) [8]: Our CS implementation is faith-
ful to the one reported in [8]. In every epoch, the thread
with the highest criticality and above a threshold of 1.2 is
accelerated on the fastest core configuration, and all the
other configurations are set to the highest homogeneous
configuration that consumes the remaining power budget.
This thread is accelerated until its criticality value becomes
less than 0.8 or another more critical thread above the
threshold is found, in which case the new critical thread is
accelerated. In addition, for a fair comparison, we ensure that
if there is any residual power at this point, the remaining
threads are accelerated to highest possible configurations in
the order of decreasing thread criticality. This is the baseline
approach over which we will compare TPEq. Although one
can potentially devise more elaborate heuristics that look
at the next most critical thread(s), we are not aware of any
principled way to use CS for fine-grained optimization as
enabled by TPEq.
MaxBIPS [18]: MaxBIPS uses the same epoch length and
predictors (power and performance) as TPEq. The sum-
IPS optimization is performed using an off-the-shelf ILP
solver in Matlab [31], and the solutions are fed back to
Sniper. Since running an ILP solver would not be a practical
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solution in a real implementation, we also implemented
MaxBIPS-heuristic, a polynomial time heuristic solver for
the MaxBIPS objective function.

4.1 Power and Performance Prediction
The TPEq predictors were trained offline on a small sub-
set of five randomly chosen benchmarks (out of 24) with
different input sets as used in the rest of the experiments.
In terms of CPI prediction, we observe a mean absolute
error of 13.7% over more than 100,000 samples collected
over all benchmarks. Of this, 5.7% can be attributed directly
to temporal errors from last-value prediction. The rest of the
error comes from predicting the CPI on one core configura-
tion based on measurements on another core configuration.
The PIE prediction mechanism [45] reports similar errors of
9 − 13% with only two (big and little) core configurations,
while we have five. Further PIE only predicts CPI on a
different core configuration for the current epoch, while we
predict CPI for the next epoch.

The mean absolute error in power prediction is 4.43%,
which is competitive with the errors reported in the state-
of-the-art [3], [7], [42]. It is important to note that although
the CPI predictions are used for predicting power, the power
prediction error is lower for two reasons: (i) some positive
and negative error terms from CPI estimation of individual
cores cancel out in total power and (ii) power also has a con-
stant static component. Because of the inaccuracy in power
prediction, we observe that the power consumption occa-
sionally exceeds the 80W budget, but the average overshoot
is only 3W for both TPEq and MaxBIPS, and slightly higher
for CS. Furthermore, power overshoots are short-lived and
we observed only one instance in all our experiments where
the overshoot exceeds 3W for more than three successive
epochs. In this (rare) event, a throttling mechanism kicks
in to reduce power consumption. Prior work on proactive
dynamic power management makes similar observations
about overshoots [18], [30].

4.2 Results on Barrier Synchronization Based Bench-
marks
Figure 5(a) compares the execution time of TPEq to the
competing state-of-the-art techniques, MaxBIPS and CS for
the benchmarks in Table 3. Also shown are the mean speed-
ups (with CS as baseline) separately for the homogeneous
(HO) and heterogeneous (HT) benchmarks.

Several observations can be made: first, we observe
that TPEq is the best performing technique for all but one
benchmark (out of 15). TPEq is up to 23% faster than CS
and up to 15% faster than MaxBIPS. On average, TPEq is
5% and 11% faster than CS for homogeneous and hetero-
geneous benchmarks, respectively. The speed-up of TPEq
over CS is greater for heterogeneous benchmarks since
these benchmarks feature both IPC and instruction count
heterogeneity, and provide greater opportunities for fine-
grained optimization of core configurations. It is instructive
to note that the performance improvements of TPEq are over
and above techniques that are already very competitive:
CS has been shown to improve over both AGETS and BIS
(all coarse-grained optimization techniques since they only
speed-up the most critical thread), while MaxBIPS is the

only general, fine-grained technique that we are aware of.
In addition, our results are over a wide range of barrier
synchronization benchmarks over three benchmark suites
without any benchmark sub-setting.
Does Relative Instruction Count Prediction Help? Fig-
ure 5(b) compares TPEq with a version, TPEq-W, in which
we do not perform relative instruction count prediction and
instead set all the weights, w(i), to one. Effectively, TPEq-
W assumes that all threads execute the same number of
instructions, and only account for IPC heterogeneity.

Note that although TPEq and TPEq-W are nearly identi-
cal for all homogeneous benchmarks (as expected, since all
threads execute the same number of instructions), the speed-
up of TPEq over TPEq-W is significant for heterogeneous
benchmarks — 15% on average and up to 20%.

Fig. 6: Progress plots for FFT benchmark.

Why does TPEq outperform MaxBIPS and CS?
To better understand why TPEq outperforms MaxBIPS,

Figure 6 shows the MaxBIPS and TPEq progress plots for
the FFT benchmark, focusing on the second barrier phase.
Note that, compared to the baseline FFT progress plot
in Figure 1a, both the MaxBIPS and TPEq progress plots
have much less heterogeneity in thread progress. In fact,
although MaxBIPS is not explicitly meant to equalize IPCs,
we observe that it many case, such as this, it speeds up low
IPC threads and slows down high IPC threads. Nonetheless,
it is not able to equalize as IPCs as effectively as TPEq, as is
clear from Figure 6 — the progress plots for all threads are
almost perfectly aligned with TPEq, but more spread out for
MaxBIPS. Compared to the progress plot in Figure 1a, TPEq
achieves an almost 60% reduction in stall time.

Next we compare CS with TPEq, this time using Flu-
idanimate, a heterogeneous benchmark using progress plots
shown in Figure 7. Again, observe that TPEq is more suc-
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Fig. 7: Progress plots for Fluidanimate using CS and TPEq.
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Fig. 8: Time spent by each thread in different configurations
for CS and TPEq.

cessful in reducing thread stalls (regions where a thread’s
progress plot is flat) than CS, primarily because TPEq
speeds-up or slows-down each thread optimally so they
reach barriers at (about) the same time, while CS only
speeds-up the most critical thread. In fact, the most critical
thread identified by CS is sped-up more than necessary,
and end up stalling on the next barrier. Compared to the
baseline, in which all threads are executed on identical cores
within same power budget, TPEq reduces total stall time by
as much as 50%, while CS only results in less than 20%
reduction in stall time.

Further insight can be obtained from Figure 8, which
shows the time spent by each thread in each configuration
for CS and TPEq. Although it is clear that both both CS
and TPEq identify Thread 11 as most critical (assigning
it to higher power/performance configurations), TPEq as-
signs each thread (including Thread 11) to a great range
of configurations since it is able to perform fine-grained
optimization. In fact, configuration 4 is not utilized by CS
at all, while this is not the case for TPEq.

4.3 Results on Remaining Benchmarks
Figure 9 shows the speed-up of TPEq and MaxBIPS nor-
malized to CS for the benchmarks in Table 4 that do not
use barrier synchronization. We reiterate that TPEq is best
suited for barrier synchronization based parallel programs.
However, since TPEq does not explicitly look for barriers —
adaptation happens at regularly sized epochs and threads
asynchronously update their weights — it can be used with
any parallel program.

We observe in Figure 9 that even for these benchmarks
TPEq outperforms CS. In addition, it is competitive with
MaxBIPS on average and on a per-benchmark basis. The
improvement with respect to CS can be explained, in part,
because TPEq (and MaxBIPS) both perform fine-grained
optimization while CS is coarse-grained. On the other hand,
the competitiveness of TPEq with MaxBIPS is more sur-
prising since MaxBIPS should be the ideal objective at least
for the thread pool and mapreduce benchmarks. We make
the following observations to help explain the results: (a)
for thread-pool and mapreduce benchmarks, we observed
TPEq-W performs as well as TPEq and therefore TPEq is
primarily equalizing instruction counts in these settings, in
other words, acting as a load balancer; and (b) for pipeline
benchmarks we note that the TPEq weights track thread crit-
icality (to some extent), since the least (most) critical threads
frequently (rarely) stall on full/empty queues. Nonetheless,
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Fig. 9: Execution time on benchmarks in Table 4.
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Fig. 10: Performance results for DVFS based dynamic adap-
tation comparing MaxBIPS with TPEq.

we note that more work needs to be done on generalizing
TPEq for other modes of parallelism beyond barrier syn-
chronization.

4.4 DVFS Results
TPEq can be easily modified for DVFS based dynamic adap-
tation. For DVFS, the power and CPI predictors are trained
for every voltage-frequency configuration (as opposed to
every micro-architectural configuration) using the model
described in section 2.2.1. In addition, the second term of
the progress metric in Equation 1 is modified to Efreq(i)

w(i)CPI(i) ,
where E is now measured in seconds (as opposed to
clock cycles) and freq(i) is the frequency of thread i. We
performed DVFS experiments with five voltage-frequency
levels ranging between {0.8V, 2.5 GHz} and {1V, 3.5 GHz}
and compare the performance of TPEq with MaxBIPS in
Figure 10. The average performance improvement over
MaxBIPS is (6.9%) is slightly better than the improvements
over MaxBIPS obtained for micro-architectural adaptation,
in part because of more accurate CPI prediction.

4.5 TPEq Algorithm Runtime Overhead
The TPEq optimizer needs CPI stack information from all
cores which happens implicitly via reads and writes to/from
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Fig. 11: TPEq run-time overhead

a shared address space, along with required synchronization
between threads (as discussed in Section 2.3). For 16-cores,
global communication takes roughly 10K cycles and the
TPEq prediction and optimization procedures (including
prediction overhead) take another 10K cycles. Together,
the overhead amounts to 0.6% for a 1 ms epoch length,
assuming conservatively, that all other cores are stalled
while the leader executes the TPEq routine. We also conduct
a sensitivity analysis for TPEq overhead with increasing
core/thread counts which is shown in Figure 11. The close-
to-linear scalability of TPEq optimization can be seen and
is consistent with the complexity analysis of the algorithm
which is O(MN logN), with N being the number of cores.
We observe that the overhead of global communication
grows faster than that of TPEq optimization. For many core
systems with 100s of cores, hardware based communication
and optimization support may be necessary.

5 RELATED WORK
Dynamic power and resource management of multi-core
processors is an issue of critical importance. Kumar et
al. [21] proposed the notion of single-ISA heterogeneous
architectures to maximize power efficiency while addressing
temporal and spatial application variations. Their focus
was primarily on multiprogrammed workloads. A number
of papers have proposed scalable thread scheduling and
mapping techniques for such workloads [25], [36], [38],
[40], [44]. Others have focused on leveraging asymmetry
to increase the performance of multithreaded applications
by identifying and accelerating critical sections [1], [8], [19],
[20], [22]. A more recent work by Craeynest et. al [46]
proposes to use fairness-aware equal-progress scheduling
on heterogeneous multi-cores, but it is unclear how this
technique can be extended to optimal power-constrained
performance maximization for adaptive multi-cores, which
is the focus of this work.

The work on DVFS based dynamic adaptation of multi-
core processors has made use of the sum-IPS/Watt [15]
or MaxBIPS [18] objectives, and different optimization al-
gorithms including distributed optimization [10], [39] and
control theory [16], [30]. Cochran et al. [6] present a ma-
chine learning based approach based on offline workload
characterization (and online prediction) but perform DVFS
adaptation at a coarse time granularity of 100 billion uops.
Recently, Godycki [14] et al. have proposed reconfigurable
power distribution networks to enable fast, fine-grained,

per-core voltage scaling and use this to reactively (as opposed
to TPEq’s proactive approach) slow down stalled threads
and redistribute power to working threads. Also, unlike
TPEq, this technique requires programmer inserted hints to
determine the remaining work for each thread, and uses a
heuristic approach to decide the voltage level of each core.

In the context of micro-architectural adaptation, ideas
ranging from core-level to fine-grained power gating have
been proposed [4], [13], [17], [33], [34]. Our work is most
similar in spirit to [27], which uses last-value predictor at
the barriers to set the frequency of cores so as to save en-
ergy without compromising performance. However, TPEq
is different from this technique on several counts. For one,
[27] assumes that the slow-down of each thread is directly
proportional to frequency, while the TPEq optimizer is more
general and works for complex power-performance rela-
tionships that arise from micro-architectural adaptation and
not just a simplified linear slow-down model. Second, TPEq
does not require any explicit knowledge of a barrier event
and is transparent to the programmer, while [27] requires
programmer annotations. Thus TPEq generalizes easily to
a broader set of barrier synchronization based benchmarks,
and is not restricted to applications where barriers follow
an easily discernible template (i.e., outermost for loops in
OpenMP as studied by [27]). Finally, TPEq performs fine-
grained adaptation (in time) at the granularity of an epoch,
while [27] only changes frequency once every barrier phase.

6 CONCLUSION

We proposed Thread Progress Equalization (TPEq), a run-
time mechanism to maximize performance under a power
constraint for multithreaded applications running on mul-
ticores with support for fine grained dynamic adaption of
core configurations. Compared with existing approaches,
TPEq addresses all sources of inter-thread heterogeneity and
determines in polynomial time the optimal configuration for
each core so as to minimize execution time within a power
budget. Experimental results show that TPEq outperforms
state-of-the-art techniques in the context of both micro-
architecturally adaptive multicores, and while incurring
modest execution time and hardware overheads.
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