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Dark Silicon Challenge

* Transistor dimensions scale by a factor of S
— §2 more transistors in same die area

. . 1.,
— Each transistor dissipates = S times power

— Fixed power budget results in dark silicon
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Dark Silicon Architectures

* How to best utilize dark silicon for performance
enhancement?

— Heterogenelity

.. .

Homogeneous Cores?



Process Variations

* Inability to precisely manufacture transistors
— Chip-to-chip variations
— Within-chip variations
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Process Variation Impact
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Key idea: exploit heterogeneity that arises from
the impact of process variations
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Motivation: Best 1 of N

e Best 1 of N statistics

— Provision chip with N identical cores and cherry-
pick core with highest frequency
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Best 1 of N for Leakage
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Leakage Power Dissipation

* 30% reduction in average leakage power
e 2X reduction in worst-case leakage power



Related Work

 BubbleWrap [Karpuzcu et al.,MICRO’09]
— Use redundant cores to increase lifetime
— Cores run in Turbo mode till they “pop”
* Dark silicon architectures
— Heterogeneous cores [Esmaceilzadeh et al.,ISCA’11]
— Accelerators [Venkatesh et al., MICRO’11]
» Statistical Element Selection

— Increasing immunity of analog circuits to process
variations [Keskin et al.,CICC’10]

* Process variation aware scheduling

— |ILP based solution for multi-programmed apps
[Teodorescu et al.,ISCA’08]



Variability Modeling

* Generate die map of process variations
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Single Gaussian random variable
to model impact of process
variations at each location



Frequency and Leakage

* Each core has N, identical critical
paths

— Core frequency limited by slowest
critical path

— Critical path delay inversely
proportional to process parameter
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* Leakage is summed over all N_,,, grid points
— Exponential dependence on process parameters
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Cherry Picking for Single Threads
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* Wide range of power and frequency values
* One “technology beating” core
— Likelihood increases with more % dark silicon
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Cherry Picking: Multi-program Workloads

 Maximize performance within a P Watt budget
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Pseudo-polynomial time solution

[ Instance of the knapsack problem J
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Cherry Picking: Multi-threaded Wkloads

Cherry-picked cores

o4l
sssssss
CCCCC

(

=2+ Dark cores

.' Thread to
| core

| mapping

M parallel
threads

Barrier

 Common execution template

for a number of parallel
benchmarks

— Sequential phase followed
by barrier based
synchronization of parallel
threads

* Optimal mapping of threads

to cores such that:

— Performance is maximized
within a power budget
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Performance Model

* Goal: analytical + accurate performance model that
is amenable to optimization

Amount of Amount of
sequential work parallel work
v
Waeq Woar
E= TR
/ fseq M x MINe[1,M] (fjﬂﬂ?‘,?:)
Execution time Frequency of Number of \

Slowest parallel

sequential core parallel threads
core frequency

e Execution time limited by sequential thread and
slowest parallel thread

— Surprisingly accurate, although grossly simplified
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Validation
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 When core 1 frequency is lower than frequency of other cores,
lower execution time with increasing frequency

* When core 1 frequency is higher than frequency of other cores,
fixed execution time with increasing frequency
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Optimal Mapping
@ « Assume that:
— Seq. thread executes on core i

— Slowest parallel thread executes

on core |
@ @ @ — Qs a set of M-1 other cores:

kaf} Vk € Q

ZREQ Pk = Pbudget'Pj
 Execution time:

E. .= Wseq + Wypar
U fi Mfj
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Frequency Scaling

* For some <i,j> combinations, there might not exist
M-1 faster cores that meet the power budget

— Frequency scaling can be used to meet power
constraints at expense of performance

— Frequency of all parallel cores scaled to the same
frequency f, . such that:

par

MOV fpar + ) Pr(leak) < Pougger
KEQU]

— Sufficient to only look at M-1 lowest leakage cores
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Experimental Set-up

* All experimental results based on the Sniper x86
multi-core simulator

— Interval core model, cycle-accurate cache,
network and memory models

e Parsec and SPLASH benchmarks with M=16

- BIaCkSChO|eS Core Parameters Value
Nominal Frequency 3.0 GHz
—_ FFT Area 10.3 mm*
Peak Dynamic Power 4.08W
. Peak Leakage Power 2.1W
_ Rad IX L2 Cache Paramtzter*; :
2 C: s (per core) Value
. . Size 2 MB
— Fluidanimate Arca 12 mn?
Peak Dynamic Power 0.76W
_ SW 3 pt|0 ns Peak Leakage Power 1.56W
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Performance Model Validation
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Performance Improvements
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* Averaged over 10 Monte Carlo experiments for each
benchmark and each architecture
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Core Power Dissipation
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* Cherry picking proposes to pick the best subset of
cores in a homogeneous dark silicon chip

— Power budget is met
— Performance is maximized
— Exploits process variations to create heterogeneity

* Next generation dark silicon architectures might
consist of a mix of architectural and process
variation driven heterogeneity

— Replica accelerators
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 HaDeS: Architectural Synthesis for Heterogeneous
Dark Silicon Chip Multi-Processors, DAC’13

— More sophisticated analytical performance
models

— Varying degrees of parallelism
— Architectural heterogeneity
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