

Design, Automation & Test in Europe 18-22 March, 2013 - Grenoble, France

The European Event for Electronic System Design & Test

Cherry Picking: Exploiting Process Variations in the Dark Silicon Era

Siddharth Garg University of Waterloo

Co-authors:

Bharathwaj Raghunathan, Yatish Turakhia and Diana Marculescu

Dark Silicon Challenge

- Transistor dimensions scale by a factor of S
 - $-S^2$ more transistors in same die area
 - Each transistor dissipates $\approx \frac{1}{c}$ times power
 - Fixed power budget results in dark silicon

80% dark silicon at the 8 *nm* technology node

[Esmaeilzadeh et al., ISCA'11]

Progress Hits Snag: Tiny Chips Use Outsize Power By JOHN MARKOFF Published: July 31, 2011

For decades, the power of computers has grown at a staggering rate as designers have managed to squeeze ever more and ever tinier transistors onto a silicon chip - doubling the number every two

Dark Silicon Architectures

 How to best utilize dark silicon for performance enhancement?

Homogeneous Cores?

Process Variations

- Inability to precisely manufacture transistors
 - Chip-to-chip variations

- Within-chip variations

45 60 40 40 Wafer Y (mm) 20 35 0 -20 30 -40 25 -60 -50 50 0 CD (nm) Wafer X (mm) [Source: Friedberg et al., ISQED'05]

Increasing proportion of within-chip variations

Process Variation Impact

Motivation: Best 1 of N

- Best 1 of N statistics
 - Provision chip with N identical cores and cherrypick core with highest frequency

Best 1 of N for Leakage

- 30% reduction in average leakage power
- 2X reduction in worst-case leakage power

Related Work

- BubbleWrap [Karpuzcu et al., MICRO'09]
 - Use redundant cores to increase lifetime
 - Cores run in Turbo mode till they "pop"
- Dark silicon architectures
 - Heterogeneous cores [Esmaeilzadeh et al., ISCA'11]
 - Accelerators [Venkatesh et al., MICRO'11]
- Statistical Element Selection
 - Increasing immunity of analog circuits to process variations [Keskin et al.,CICC'10]
- Process variation aware scheduling
 - ILP based solution for multi-programmed apps [Teodorescu et al.,ISCA'08]

Variability Modeling

Generate die map of process variations

Single Gaussian random variable to model impact of process variations at each location Spatial correlations modeled using an exponentially decaying function of distance

[Zhiong et al., TCAD'07]

Frequency and Leakage

- Each core has N_{cp} identical critical paths
 - Core frequency limited by slowest critical path
 - Critical path delay inversely proportional to process parameter

Frequency
$$\propto \min_{i \in N_{cp}} \frac{1}{p_i}$$

- Leakage is summed over all N_{core} grid points
 - Exponential dependence on process parameters

$$Leakage \propto \sum_{i=1}^{N_{core}} \gamma e^{\alpha p_i}$$

Cherry Picking for Single Threads

Core1	Core11	Core21	Core31	Core41	Core51	Core61	Core71	Core81	Core91
Core2	Core12	Core22	Core32	Core42	Core52	Core62	Core72	Core82	Core92
Core3	Core13	Core23	Core33	Core43	Core53	Core63	Core73	Core83	Core93
Core4	Core14	Core24	Core34	Core44	Core54	Core64	Core74	Core84	Core94
Core5	Core15	Core25	Core35	Core45	Core55	Core65	Core75	Core85	Core95
Core6	Core16	Core26	Core36	Core46	Core56	Core66	Core76	Core86	Core96
Core7	Core17	Core27	Core37	Core47	Core57	Core67	Core77	Core87	Core97
Core8	Core18	Core28	Core38	Core48	Core58	Core68	Core78	Core88	Core98
Core9	Core19	Core29	Core39	Core49	Core59	Core69	Core79	Core89	Core99
Core10	Core20	Core30	Core40	Core50	Core60	Core70	Core80	Core90	Core100

Only 4 Pareto optimal cores in the original design without spare cores

- Wide range of power and frequency values
- One "technology beating" core
 - Likelihood increases with more % dark silicon

Cherry Picking: Multi-program Workloads

- Maximize performance within a P Watt budget
 - Performance measured as the sum of frequencies of cores that are selected

Instance of the knapsack problem Pseudo-polynomial time solution

Cherry Picking: Multi-threaded Wkloads

- Common execution template for a number of parallel benchmarks
 - Sequential phase followed
 by barrier based
 synchronization of parallel
 threads
- Optimal mapping of threads to cores such that:
 - Performance is maximized within a power budget

Performance Model

• Goal: analytical + accurate performance model that is amenable to optimization

 Execution time limited by sequential thread and slowest parallel thread

- Surprisingly accurate, although grossly simplified

Validation

- When core 1 frequency is lower than frequency of other cores, lower execution time with increasing frequency
- When core 1 frequency is higher than frequency of other cores, fixed execution time with increasing frequency

Optimal Mapping

Assume that:

- Seq. thread executes on core i
- Slowest parallel thread executes on core j
- Q is a set of *M*-1 other cores:

$$f_k \ge f_i \quad \forall k \in Q$$

$$\sum_{k \in Q} P_k \leq P_{budget} - P_j$$

Execution time:

$$E_{ij} = \frac{W_{seq}}{f_i} + \frac{W_{par}}{Mf_j}$$

Frequency Scaling

- For some <i,j> combinations, there might not exist
 M-1 faster cores that meet the power budget
 - Frequency scaling can be used to meet power constraints at expense of performance
 - Frequency of all parallel cores scaled to the same frequency f_{par} such that:

$$MC_L V^2 f_{par} + \sum_{k \in Q \cup j} P_k(leak) \le P_{budget}$$

- Sufficient to only look at M-1 lowest leakage cores

Experimental Set-up

- All experimental results based on the Sniper x86 multi-core simulator
 - Interval core model, cycle-accurate cache, network and memory models
- Parsec and SPLASH benchmarks with M=16
 - Blackscholes
 - FFT
 - Radix
 - Fluidanimate
 - Swaptions

Core Parameters	Value
Nominal Frequency	3.0 GHz
Area	$10.3 \ mm^2$
Peak Dynamic Power	4.08W
Peak Leakage Power	2.1W
L2 Cache Parameters (per core)	Value
L2 Cache Parameters (per core) Size	Value 2 MB
L2 Cache Parameters (per core) Size Area	Value 2 MB 11.2 mm ²
L2 Cache Parameters (per core) Size Area Peak Dynamic Power	Value 2 MB 11.2 mm ² 0.76W

Performance Model Validation

4.7% average error and 7.2% RMS error

Performance Improvements

 Averaged over 10 Monte Carlo experiments for each benchmark and each architecture

Insight

Discussion

- Cherry picking proposes to pick the *best* subset of cores in a homogeneous dark silicon chip
 - Power budget is met
 - Performance is maximized
 - Exploits process variations to create heterogeneity
- Next generation dark silicon architectures might consist of a mix of architectural and process variation driven heterogeneity

– Replica accelerators

Upcoming

- HaDeS: Architectural Synthesis for Heterogeneous Dark Silicon Chip Multi-Processors, DAC'13
 - More sophisticated analytical performance models
 - Varying degrees of parallelism
 - Architectural heterogeneity

