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Dark Silicon Challenge
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80% dark silicon at the 8 nm

technology node
[Esmaeilzadeh et al., ISCA’11]



Heterogeneous Cores

• How to best utilize dark silicon for performance 
enhancement?

– Heterogeneity

Dark Silicon Architectures
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Accelerators

Homogeneous Cores?



• Inability to precisely manufacture transistors

– Chip-to-chip variations

– Within-chip variations

Process Variations
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[Source: Friedberg et al., ISQED’05]

Increasing proportion of 
within-chip variations



Process Variation Impact
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1.7X deviation in leakage power 

Intel 80-core 
Teraflop 

[Dighe et al., JSSC’11]

30% deviation in frequency
Key idea: exploit heterogeneity that arises from 

the impact of process variations



• Best 1 of N statistics

– Provision chip with N identical cores and cherry-
pick core with highest frequency

Motivation: Best 1 of N
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1-s increase in frequency 
with core doubling



• 30% reduction in average leakage power

• 2X reduction in worst-case leakage power

Best 1 of N for Leakage
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Leakage Power Dissipation

Count

Potential yield loss due 
to thermal runaway

Best 1-of-1

Best 1-of-4

Best 1-of-2



• BubbleWrap [Karpuzcu et al.,MICRO’09]

– Use redundant cores to increase lifetime 

– Cores run in Turbo mode till they “pop”

• Dark silicon architectures

– Heterogeneous cores [Esmaeilzadeh et al.,ISCA’11]

– Accelerators [Venkatesh et al.,MICRO’11]

• Statistical Element Selection

– Increasing immunity of analog circuits to process 
variations [Keskin et al.,CICC’10]

• Process variation aware scheduling 

– ILP based solution for multi-programmed apps 
[Teodorescu et al.,ISCA’08]

Related Work
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• Generate die map of process variations

Variability Modeling
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[Zhiong et al., TCAD’07]



• Each core has Ncp identical critical 
paths
– Core frequency limited by slowest 

critical path
– Critical path delay inversely 

proportional to process parameter

Frequency and Leakage
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Critical Paths (CP)

• Leakage is summed over all Ncore grid points

– Exponential dependence on process parameters



• Wide range of power and frequency values
• One “technology beating” core 

– Likelihood increases with more % dark silicon

Cherry Picking for Single Threads

10

Core Power Dissipation

C
o

re
 F

re
q

u
e

n
cy

Pareto Optimal Cores

Technology Beating
Core

Only 4 Pareto optimal cores in the 
original design without spare cores



• Maximize performance within a P Watt budget

– Performance measured as the sum of frequencies 
of cores that are selected

Cherry Picking: Multi-program Workloads
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P Watt Bin

Instance of the knapsack problem 
Pseudo-polynomial time solution 



Cherry Picking: Multi-threaded Wkloads
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• Common execution template 
for a number of parallel 
benchmarks

– Sequential phase followed 
by barrier based 
synchronization of parallel 
threads

• Optimal mapping of threads 
to cores such that:

– Performance is maximized 
within a power budget



• Goal: analytical + accurate performance model that 
is amenable to optimization

• Execution time limited by sequential thread and 
slowest parallel thread

– Surprisingly accurate, although grossly simplified

Performance Model
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Execution time

Amount of 
sequential work

Frequency of 
sequential core

Amount of 
parallel work

Number of 
parallel threads Slowest parallel 

core frequency



• When core 1 frequency is lower than frequency of other cores, 
lower execution time with increasing frequency

• When core 1 frequency is higher than frequency of other cores, 
fixed execution time with increasing frequency

Validation
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• Assume that:

– Seq. thread executes on core i

– Slowest parallel thread executes 
on core j

– Q is a set of M-1 other cores:

• Execution time:

Optimal Mapping
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Seq.

Par. 1 Par. 2 Par. M

Core i

Core j



• For some <i,j> combinations, there might not exist 
M-1 faster cores that meet the power budget

– Frequency scaling can be used to meet power 
constraints at expense of performance

– Frequency of all parallel cores scaled to the same 
frequency fpar such that:

– Sufficient to only look at M-1 lowest leakage cores

Frequency Scaling
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• All experimental results based on the Sniper x86 
multi-core simulator

– Interval core model, cycle-accurate cache, 
network and memory models

• Parsec and SPLASH benchmarks with M=16

– Blackscholes

– FFT

– Radix

– Fluidanimate

– Swaptions

Experimental Set-up
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• 4.7% average error and 7.2% RMS error

Performance Model Validation
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network latencies are not accounted for

50% Dark Silicon
(red)

33% Dark Silicon
(green)



• Averaged over 10 Monte Carlo experiments for each 
benchmark and each architecture

Performance Improvements
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30% 22%



Insight
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• Cherry picking proposes to pick the best subset of 
cores in a homogeneous dark silicon chip

– Power budget is met

– Performance is maximized

– Exploits process variations to create heterogeneity

• Next generation dark silicon architectures might 
consist of a mix of architectural and process 
variation driven heterogeneity

– Replica accelerators

Discussion
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• HaDeS: Architectural Synthesis for Heterogeneous 
Dark Silicon Chip Multi-Processors, DAC’13

– More sophisticated analytical performance 
models

– Varying degrees of parallelism

– Architectural heterogeneity

Upcoming
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