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Dark Silicon Challenge

* Transistor dimensions scale by a factor of S

— S2 more transistors in same die area

. . 1.
— Each transistor dissipates = - times power

— Fixed power budget results in dark silicon

35

-0 Po\wer # Transistors

25 (] [ ] y A
Dark Silicon

N o 7/

N s

# Transistors

S

"/

45 32 22 16 11 8

Technology Node

1.2

-1

- 0.8

- 0.6

- 0.4

- 0.2

c
S
o~ o ege
= 80% dark silicon at the 8
7))
x nm technology node
8 [Esmaeilzadeh et al., ISCA11]
=
g Progress Hits Snag: Tiny Chips Use Outsize Power
By JOHN MARKOFF
(@)
m For decades, the power of computers has grown at a staggering rate as  [EJ RECOMMEND
designers have managed to squeeze ever more and ever tinier W TWITTER
transistors onto a silicon chip — doubling the number every two [ Lnkeon



The Dark Silicon Era: Demise of Multi-core
Scaling?

» Rapid rise in the fraction of dark silicon due to power
constraints.
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» What's the point of increasing core count if they aren’t
active??

» Need to think out of the
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Dark Silicon Architectures

» How to best utilize dark silicon for
How do we decide?

»What types of cores and how many cores of each

type should one provision on a CMP of given area so
as to maximize the overall performance benefit?

»Which core/s to turn on without exceeding power
budget / how to map threads!?

»How much parallelism to exploit?




HaDeS: Overview
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Application Performance Model
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Application Performance Model
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Application Performance Model
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Application Performance Model
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Application Performance Model

Slowest parallel thread limits
performance
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Application Performance Model
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Ranges over all [ Last Level Cache ]
parallel threads




Application Performance Model
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\ [ Last Level Cache ]
Degree of parallelism

of application i




Application Performance Model

mP(2) mP(3)
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t [ Last Level Cache ]
Total execution time of a parallel
thread v of application i depends
on the core mapping mP(v) and is
inversely proportional to
# parallel threads.




Application Performance Model
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Penalty term for increased [ Last Level Cache ]
resource contention with
increasing # parallel
threads




Application Performance Model

Model parameters
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Application Performance Model: Validation

Simple, but surprisingly accurate!!!
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HaDeS Framework
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User defined weights for workload i

Goal: Minimize weighted sum of

execution time for each application.



HaDeS Framework
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Sequential execution time of workload i

Goal: Minimize weighted sum of

execution time for each application.



HaDeS Framework

(N A
min| ) p,.(I' +17)
\ tJ

Parallel execution time of workload i

Goal: Minimize weighted sum of

execution time for each application.



HaDeS Framework: ILP-OPT
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0-1 Indicator variable that is 1 if at least
one parallel thread of application i
executes on a core of type |




HaDeS Framework: ILP-OPT

lp>b

1

Constraint: Parallel

Variable DOP introduces non-linearity




HaDeS Framework: ILP-OPT
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Many Only O(MxN) variables in fixed DOP case an ILP!




HaDeS Framework: ITER-OPT

» Separates the architectural

Initial Guess

optimization from DOP For Q*
optimization. DOP Optimizer
» Start with initial guess of design a2 App N
vector, compute optimal DOP
: ) ~ 000 o
for this heterogeneous design, 5 -
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» Represents local minima. i - Optimized 2 3
Only 2.5% loss of optimality in 2 . Heterogeneous 2
. Architecture »
experiments. -

» Orders of magnitude faster
(430X speedup)than ILP-OPT.
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Experimental Results
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» Performance model fairly
accurate. Only 5.2% average
error over 180 experiments
with homogeneous and

heterogeneous dark silicon
CMPs.
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xperimental Results

» Between |9% to 60% performance improvements in
heterogeneous dark silicon CMPs over variable and fixed
(16 threads) DOP homogeneous design respectively for
~50% dark silicon.
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xperimental Results

» Benefits of heterogeneous design begin to saturate
beyond certain portion of dark silicon.
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Thank Youl!

I Please visit the poster for questions and discussions!
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